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Abstract
The Simon effect represents a phenomenon in which the location of the stimuli affects the speed and accuracy of the response, 
despite being irrelevant for the task demands. This is believed to be due to an automatic activation of a response correspond-
ing to the location of the stimuli, which conflicts with the controlled decision process based on relevant stimuli features. 
Previously, differences in the nature of the Simon effect (i.e., the pattern of change of the effect across the distribution of 
response times) between visual and somatosensory stimuli were reported. We hypothesize that the temporal dynamics of 
visual and somatosensory automatic and controlled processes vary, thus driving the reported behavioral differences. While 
most studies have used response times to study the underlying mechanisms involved, in this study we had participants reach 
out to touch the targets and recorded their arm movements using a motion capture system. Importantly, the participants 
started their movements before a final decision was made. In this way, we could analyze the movements to gain insights into 
the competition between the automatic and controlled processes. We used this technique to describe the results in terms of 
a model assuming automatic activation due to location-based evidence, followed by inhibition. We found that for the soma-
tosensory Simon effect, the decay of the automatic process is significantly slower than for the visual Simon effect, suggesting 
quantitative differences in this automatic process between the visual and somatosensory modalities.

Introduction

The spatial location of target stimuli, despite being task irrel-
evant, has consistently been shown to have an effect on per-
formance (Simon, & Wolf, 1963). In a typical Simon task, the 
task may be to press the left or right button depending on the 
color of the stimuli. While the location of the stimuli has no 
bearing on the correct response (left or right), participants are 
less accurate and take longer to select which button to press 
when the location of the stimulus is incongruent with the cor-
rect response relative to when they are congruent (i.e., Simon 

effect). It is assumed that this response selection conflict is 
due to some form of involuntary processing or activation of 
the spatial information (Simon, 1990). The temporal dynam-
ics of the response selection conflict are typically studied 
by examination of the pattern of change of the Simon effect 
across the distribution of response times (RTs) (De Jong, 
Liang, & Lauber, 1994; Proctor, Miles, & Baroni, 2011). The 
distribution of RTs for congruent and incongruent trials is 
partitioned into quantiles and the Simon effect is calculated 
for each quantile separately (De Jong et al., 1994; Ratcliff, 
1979; Ridderinkhof, 2002). The dynamics of the Simon effect 
across the distribution are visualized by plotting the relative 
effect for each quantile as a function of the mean RT quantile 
across conditions (i.e., delta plots). Depending on the modal-
ity of the stimulus, and details of the experiment, various delta 
plot patterns have been recorded. In some, the Simon effect 
increased, in others it decreased, or did not change as function 
of the mean response time (Salzer, Aisenberg, Oron-Gilad, 
& Henik, 2014; Töbel, Hübner, & Stürmer, 2014; Xiong, & 
Proctor, 2016). This variety in patterns is noteworthy, because 
it is the root of several disputes (for a review see Salzer et al., 
2017). First, are the increasing and decreasing slopes the out-
come of a common or two separate mechanisms? Wascher 
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et al. (2001) and Wiegand and Wascher (2005, 2007) have 
argued that increasing (e.g., somatosensory) and decreasing 
(i.e., horizontal visual) Simon effects are the result of two dif-
ferent processes: ‘visuomotor Simon effect’ and a ‘cognitive 
Simon effect’. This view was contradicted in a recent review 
(Salzer, de Hollander, & Forstmann, 2017) where the authors 
have argued in favor of a general common interference mecha-
nism over the account of two separate mechanisms, as is sug-
gested by findings of both increasing and decreasing slopes, 
regardless of the modality. The visual modality dominates 
the literature on cognitive control and conflict resolution, 
and it is generally agreed that the components of the stimu-
lus–response conflict, as in the Simon task, are driven from 
modality-specific neural pathways (Salzer et al., 2017). Thus, 
it might be that conclusions drawn from a visual Simon task 
are relevant only to the visual modality. To make conclusions 
more generally related to conflict resolution, a comparison 
between modalities is needed. Second, is a decrease in the 
delta plots the outcome of active inhibition or passive decay 
of the irrelevant process? To complicate the situation, many 
mathematical models of perceptual decision making, such 
as the prominent drift diffusion model (Ratcliff, & McKoon, 
2008), are unable in their basic form to fit to the data from the 
Simon task (Schwarz, & Miller, 2012).

Diffusion model for conflict

A recently proposed diffusion model for conflict (DMC, 
Ulrich, Schröter, Leuthold, & Birngruber, 2015) succeeded 
where others have failed; it can account for data from a wide 
range of conflict tasks. The model captures two parallel pro-
cesses, direct response (automatic) activation of the task-irrel-
evant spatial location of the stimulus and deliberate indirect 
(controlled) processing of task-relevant feature (De Jong et al., 
1994). In the DMC, a standard drift diffusion model, with a 
constant drift rate, represents the deliberate process. The addi-
tional process that represents the direct response is modeled 
as a gamma distribution. It increases to a maximum and then 
decays. The model does not aim to determine what mecha-
nism underlies the gamma function, whether it is active inhibi-
tion of the irrelevant process (Ridderinkhof, 2002) or merely 
spontaneous decay (Hommel, 1994). These two processes are 
summed by a single accumulator. When the summed activa-
tion of the two processes reaches a predetermined bound, as 
with the standard drift diffusion model, a decision is made. 
By changing the shape of the gamma distribution, it becomes 
possible to capture the different delta plots observed (positive, 
neutral or negative). It is noteworthy that the parameters asso-
ciated with the standard drift diffusion show strong recovery, 
whereas the parameters for the gamma distribution are not 
well recovered (White, Servant, & Logan, 2018).

Continuous arm movements

Whilst sequential sampling models suggest a way of mod-
eling the temporal dynamics of the underlying process, 
the predictions are made regarding the end of the process, 
namely the response time (i.e., response termination). How-
ever, the conflict resolution is assumed to take place at an 
earlier time, before the response was executed (Ulrich et al., 
2015). We refer to the decision made at the response time in 
a typical two-alternative forced choice task as the final deci-
sion. Several studies have used reach-to-target movements 
in place of button press responses to observe the state of the 
decision process before this final decision is made. Using a 
continuous response, it is possible to access the state of the 
decision-making process (which is also assumed to be con-
tinuous) before the final decision is made (Finkbeiner, Colt-
heart, & Coltheart, 2014; Friedman, Brown, & Finkbeiner, 
2013; Spivey, Grosjean, & Knoblich, 2005). These methods 
are based on observing proxies for the current status of the 
decision process, which is still undergoing and hence has 
not yet reached one of the two options, at times before the 
final decision is made. For the Simon effect, arm movement 
studies have shown that when the trajectories of the finger-
tip are recorded during the response selection (i.e., before 
the final decision is made), participants’ movements are ini-
tially biased towards the imperative stimuli location, i.e., 
the location of the stimuli rather than the correct response 
(Buetti, & Kerzel, 2009; Finkbeiner, & Heathcote, 2016; 
Welsh, Pacione, Neyedli, Ray, & Ou, 2015). The activation 
towards the stimuli can be observed as partial errors, which 
are small electromyography (EMG) bursts in a response-
related muscle on the side of the stimuli location (Servant, 
White, Montagnini, & Burle, 2016). When response selec-
tion and movement execution are artificially separated by the 
experimental protocol, the Simon effect can be observed in 
both phases of the response (Scorolli, Pellicano, Nicoletti, 
Rubichi, & Castiello, 2014). Further, it was found that the 
Simon effect is better described by an account where the 
automatic activation (based on stimuli location) starts earlier 
than the controlled process (based on the relevant informa-
tion), compared to an account based on magnitude differ-
ences in terms of the automatic and controlled processes 
(Finkbeiner, & Heathcote, 2016).

Activation–inhibition (AI) model

In this paper, we present and apply a model we termed 
the activation–inhibition model, based on the model pro-
posed in Ridderinkhof (2002). As our goal is to model the 
decision-making process as it is taking place, rather than 
the end of the process (which is typically the response 
time), we model the amount of activation (i.e., evidence 
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accumulation) as a function of time. Similar to the DMC 
model, we assume that there is a deliberate, controlled 
process based on the content of the stimuli, which gradu-
ally increases its activation as a function of time. Addition-
ally, we assume that there is an automatic process that is 
driven by the stimuli location, which similarly increases its 
activation as a function of time. The location-based activa-
tion is gradually inhibited by a separate process until it no 
longer has an effect. We assume that we can observe the 
sum of these activations as a function of time from the kin-
ematic data, described in detail below. When the activation 
reaches a bound, then the final decision has been made.

Based on this model, we assume that the observed overall 
activation (see Fig. 1a) is the sum of the automatic and con-
trolled responses. We assume that the automatic response is 
equal in magnitude in the congruent and incongruent cases 
(only in opposite directions). If we sum the congruent and 
incongruent activations, we are left with two times the con-
trolled process (as the congruent and incongruent automatic 
activations cancel out). Hence, taking half the sum of the 
congruent and incongruent responses provides the controlled 
process (see Fig. 1b). Similarly, if we subtract the incongru-
ent activation from congruent activation, then the controlled 
process cancels out, and we are left with two times the auto-
matic response. Thus, taking half of the difference between 
the activation in the incongruent response from the activa-
tion in the congruent response leaves us with the automatic 

response (see Fig. 1c). If we assume that the automatic acti-
vation and the selective inhibition are also linear processes, 
we can also find the onset time and slopes of these processes 
(see Fig. 1d).

In this study, we accessed the current amount of informa-
tion accumulated (i.e., activation) using proxy, cumulative 
submovement amplitudes (Finkbeiner, & Friedman, 2011), 
described in more detail below. This technique is a way of 
observing the state of the decision-making process at time 
points before the final decision is made. We will use this 
technique to test whether the proposed activation–inhibition 
model can be fit to the data.

The relative processing speed of the spatial and non-
spatial attributes of the stimulus is dependent on modal-
ity-specific neural pathways, modulated by the nature and 
complexity of the stimulus, and reflected in delta plot slopes 
(Salzer et al., 2017). In particular, while with horizontally 
aligned visual stimuli the Simon effect decays, with horizon-
tal somatosensory stimuli the Simon effect does not decay 
(Salzer et al., 2014; Töbel et al., 2014). The difference in 
delta plots between the visual and somatosensory versions 
of task may serve to our benefit as an amplifier of the phe-
nomena. We predict that the activation–inhibition model will 
be able to be fit to data for both tasks. The model may fail 
for one of the modalities if, for example, there is automatic 
activation but no subsequent inhibition.

Fig. 1  Schema of decomposi-
tion of the activation. a An 
example of observed activation 
in an experiment. The observed 
activation is assumed to be the 
sum of the controlled and auto-
matic processes, with the auto-
matic process assumed to have 
equal magnitude but positive 
sign for congruent trials, and 
negative sign for incongruent 
trials. Based on this, we can cal-
culate b the controlled process 
as half the sum of the congruent 
and incongruent activations. 
Similarly, we can calculate c the 
automatic process as half the 
difference between congruent 
and incongruent activations. 
The automatic process can then 
be decomposed into an auto-
matic activation, and delayed 
inhibition. When the inhibition 
reaches 1, the automatic compo-
nent no longer has an effect
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We hypothesize that both the onset of the activation and 
the inhibition of the automatic process for visual stimuli 
will take place significantly earlier than for the somatosen-
sory stimuli, based on faster responses observed in previ-
ous studies for visual stimuli (Salzer, 2013; Salzer et al., 
2014). As the targets are quite distinct in both modalities, 
we assume that the rate of uptake will be similar for the 
visual and somatosensory stimuli. The goal of this study is 
to determine whether the previously observed differences 
in the Simon affect for different modalities and setups can 
be explained by timing and gain differences in terms of the 
inhibition processes, i.e., can a single process model suc-
cessfully model the Simon effect in its different forms?

Methods

Participants

Sixteen undergraduate students (ten females; 22–33 years of 
age, mean = 25 years) from Tel Aviv University took part in 
the experiment. Participants were reimbursed for participa-
tion in the experiments (60 shekels in total). Informed con-
sent was obtained from all individual participants included 
in the study. The participants signed an informed consent 
form before starting the experiment, and the experiment 
was approved by the Tel Aviv University Human Ethics 
committee.

Apparatus

The responses were recorded using a Polhemus Liberty 
magnetic motion capture system, recording at 240 Hz, 
with the sensor taped to the fingernail of the index finger 
on the right hand. Each trial started at the same position, 
marked by a sticker (5 cm from the edge of the table), and 
the responses involved reaching out and touching a sticker 
on one of the two wooden targets placed next to the moni-
tor (see Fig. 2). Participants were instructed to touch the 
wooden targets instead of the screen due to limitations of 
the magnetic motion capture system. A similar setup, with 
its lack of spatial overlap between the stimulus and target 
has been used previously for studying the Simon effect 
(Finkbeiner, & Heathcote, 2016), where strong Simon 
effects were observed. Each target was 43 cm horizontally 
(left or right) from the starting position, 34 cm in front of 
the starting position and at a height of 25 cm. The loca-
tion of the sensor on the fingernail while the participants 
touched the start point and the two targets were recorded 
immediately prior to the experiment, and were used in 

the experiment to identify when the subject was at the 
start position or at one of the targets. The instructions 
and visual stimuli were shown on a 24″ monitor (Sam-
sung S24B300, 52.2 cm × 29.6 cm, 1920 × 1080 pixels). 
Participants wore circumaural headphones during all 
experiments, to block external noise and play white noise 
to prevent hearing the somatosensory stimulation, and to 
deliver beeps which were used to indicate the start of a 
trial and provide feedback. The experiment was run using 
the Repeated Measures software (Friedman, 2014), Matlab 
software which runs on top of the Psychophysics toolbox 
(Brainard, 1997).

Visual target

The visual target stimulus was a white outline of a triangle 
or a square against the black screen background. An equal 
number of triangle and square stimuli were introduced. 
The figures appeared on either the right or left side of 
the screen (see Fig. 2). For half of the participants, the 
correct response to triangle stimuli was to reach out and 
touch the left touch base with their index finger, and the 
correct response to the continuous stimuli was to reach out 
and touch the right touch base with the right index finger. 
For the other half of the participants, the mapping was the 
opposite. In the congruent condition, both the target and 
correct response were on the same side. In the incongruent 
condition, they were contralateral.

Fig. 2  Experimental setup. The participants started each trial with 
their hand on the green sticker near the edge of the table. They were 
instructed to reach out and touch the relevant target (sticker on the 
poles on the left or right), based on the stimulus (visual or somatosen-
sory), and to start moving on the third beep. The trial ended when 
the participant touched one of the two targets. The x, y and z axis are 
shown, and the analysis of the movement data was performed in 2D 
(x–y plane)
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Vibrotactile system

Two C2 tactors (i.e., vibrating somatosensory actuators), 
powered by an Eval 2.0 controller (Engineering Acoustics 
Inc.), were stitched to an elastic-fiber strap. The strap was 
worn around the torso at the waist level over the participant’s 
clothing. The distance between the left and right vibrotactors 
was 27 cm. The elastic-fiber strap stretched to fit different 
waistlines, therefore it should be noted that these distances 
were not firmly fixed between participants. One vibrotactor 
was positioned to the left of the spinal column (left vibrotac-
tor), and the other to the right of the spinal column (right 
vibrotactor), as shown in Fig. 3.

Somatosensory target

The somatosensory target stimulus was the same as used 
previously (Salzer et al., 2014): a 250 Hz vibration of either 
a single continuous 500 ms pulse (i.e., continuous stimulus) 
or a fast sequence of five equally spaced 50 ms pulses with 
a total duration of 500 ms (i.e., intermittent stimulus). An 
equal number of intermittent and continuous stimuli were 
introduced in both the practice and experimental blocks, 
activated by either right or left tactors. For half of the par-
ticipants, the correct response to the continuous stimuli 
was moving the hand to touch the left touch base, and the 
correct response to the continuous stimuli was moving 
the hand to touch the right touch base. For the other half 
of the participants, the mapping was the opposite. In the 

congruent condition, both the target and correct response 
were on the same side. In the incongruent condition, they 
were contralateral.

Design

Half of the participants were assigned to the somatosensory 
task first and the other half to the visual task first. Each ses-
sion included 480 trials, taking approximately 1 h. The two 
sessions ran on separate days.

Experimental procedure

The participant sat in front of a table. For the somatosensory 
task, at the beginning of the experiment, the experimenter 
verified that both tactors were equally sensed and comfort-
ably placed on the participant’s back. Each participant was 
introduced and familiarized with the sensation of intermit-
tent and continuous stimuli for both tactors. Headphones 
delivering white noise and the beeps were worn in both 
somatosensory and visual conditions.

Each trial began with a fixation cross displayed for 
2000 ms at the center of the computer screen (see Fig. 3). 
After this, the target was activated (or displayed), for 
500  ms. Three stimulus-onset asynchronies (SOA, i.e., 
the time between stimulus onset and the go signal) were 
used: 0 ms, 150 ms and 250 ms (as used in Finkbeiner et al., 
2014), with equal probabilities, to sample the decision pro-
cess of the participants at a broad range of times. The go 

Fig. 3  Experimental procedure. After a fixation point was shown for 
2000 ms, the target was presented for 500 ms (somatosensory or vis-
ual). SOA was at either 0 ms, 50 ms, or 150 ms. Three beeps were 
produced 500 ms apart, with the last beep at SOA indicating the go 

signal. Participants were required to start moving between 100  ms 
before to 300 ms after the go signal. Following the arm movement, 
visual feedback was provided when the response was incorrect or no 
response was made
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signal was the third of three beeps, with a gap of 500 ms 
between the beeps. The participant was required to start 
moving within a response window, 100 ms before the go 
signal to 300 ms after the go signal. Visual and audio feed-
backs were provided if the participant generated a response 
outside this window (“Too early!” or “Too late!” shown on 
the screen, combined with a buzzing sound). The fixation 
cross remained on the screen until a response was produced 
or 3000 ms passed. For an incorrect response (reaching to 
the wrong target), the feedback message “Incorrect answer” 
was displayed for 1200 ms; if no response was collected, the 
message “No response received” was displayed; otherwise, 
the screen remained blank. Following this, the screen was 
blank for another 500 ms before a new trial began.

Analysis

The position data were filtered using a two-way low-pass 
fourth-order Butterworth filter, with a cutoff of 20 Hz. The 
constraints of the experiment required participants to start 
moving at different times, providing us with movements that 
began at different times post-stimulus onset. Due to the large 
amount of variation between individual trajectories, we fitted 
orthogonal polynomials, using a variant of the orthogonal 
polynomial trend analysis (OPTA) procedure (Finkbeiner 
et al., 2014; Finkbeiner, & Heathcote, 2016; Karayanidis, 
Provost, Brown, Paton, & Heathcote, 2011; Woestenburg, 
Verbaten, van Hees, & Slangen, 1983). Specifically, we 
ordered the trajectories of the correct trials for a single 
experiment cell (participant, congruent/incongruent, left/
right, somatosensory/visual) by movement initiation time 
(MIT), then fit all the x (left–right) velocities for a single 
participant, using only the order of the trial as the covari-
ate, using 12th order orthogonal polynomials (after sub-
tracting the mean velocity). This procedure thus quantified 
the changes in the velocities as a function of MIT as linear 
changes in the amplitudes of the 12th order orthogonal poly-
nomials. We then binned the MITs into 20 bins and com-
puted the velocity profiles for each bin for each participant. 
This method is preferable to simply averaging the velocities 
due to the enormous variation between repetitions of such a 
test—the OPTA procedure has been shown to significantly 
reduce the signal-to-noise ratio (Woestenburg et al., 1983).

The remainder of our analysis relies on the widely held 
assumption that our movements are composed of discrete, 
overlapping submovements (Flash, & Henis, 1991; Fried-
man et al., 2013). By assumption, each submovement is 
discrete and ballistic, that is, its amplitude, direction and 
duration are all planned before the movement onset. This 
feature allows us to probe the current movement intent at 
the time of submovement onset. By pooling data from many 
repetitions, we can observe how the movement goal changes 
as a function of time (Finkbeiner, & Friedman, 2011).

To perform this analysis, we decomposed the move-
ments into submovements, by finding the best set of sub-
movements that approximate the observed movement. The 
decomposition was performed in 2D (in the horizontal x–y 
plane), as these are the primary directions of interest. Each 
submovement is modeled according to the minimum jerk 
criterion (Flash, & Hogan, 1985), i.e., its velocity profile 
is given by (1):

where Dx is the amplitude of the movement, T0 is the move-
ment onset time, D is the duration of the movement, and 
t is time which goes from T0 ≤ t ≤ T0+ D. Each minimum 
jerk submovement has a bell-shaped velocity profile. We 
used minimum jerk submovements rather than some other 
form of submovement, because they are commonly used for 
decomposition, and there is not another form that provides a 
better fit with equal or fewer parameters (Horowitz, Majeed, 
& Patton, 2016). The reconstructed velocity profile F(t) is 
then given by the superposition (summation) of one or more 
submovements (2):

where the values subscripted with an i correspond to the ith 
submovement. While the above equations are for movement 
in the x direction, equivalent expressions can be written for 
movement in the y direction. A reconstruction cost is defined 
by (3) (Friedman, & Finkbeiner, 2010):

where Gx(t) and Gy(t) are the observed x and y components 
of the hand velocity, and Fx(t) and Fy(t) are the reconstruc-
tions of the x and y components. Fv(t) is the reconstructed 
tangential velocity, it is included to prevent the optimization 
procedure from selecting two approximately simultaneous 
submovements with large but opposite velocities. The opti-
mization technique then minimizes this error, which was 
implemented using the constrained nonlinear optimization 
function in Matlab. The initial parameter values were ran-
domly selected, and the procedure was run ten times, for 1–4 
submovements (Rohrer, & Hogan, 2006). The least number 
of submovements with reconstruction error of less than 0.03 
was selected. An example of submovement decomposition 
is shown in Fig. 4.
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ẋi(t) T0i ≤ t ≤ T0i + Di

0 t > T0i + Di

,

(3)

E =
∑
t

(
Fx(t) − Gx(t)

)2
+
(
Fy(t) − Gy(t)

)2
+

(
Fv(t) −

√
Gx(t)

2 + Gy(t)
2

)2

2
(
Gx(t)

2 + Gy(t)
2
) ,



Psychological Research 

1 3

Using the submovement decomposition, we were able to 
then compute the distance planned in the left–right direc-
tion (x) as a function of time. We use this direction and 
discard the front–back direction (y) as the component of 
the movement in this direction is not directly related to the 
decision process. We then analyze the movements for each 
participant, separately for each modality (visual and soma-
tosensory), target direction (left and right), and congruence 
(congruent and incongruent). We normalize the amplitude of 
each submovement, such that a submovement that goes from 
the start position all the way to the right target will have 
an amplitude of + 1, or − 1 if it goes to the left target. For 
each of these eight conditions, we compute the cumulative 
submovement amplitude (CSA) by averaging the sum of the 

normalized submovement amplitudes that begin before each 
time point, with negative values corresponding to movement 
to the left. Initially, the CSA will be zero (before any sub-
movements have been made), and when all movements have 
been planned, the CSA will be 1 for movements to the right 
target, or − 1 for movements to the left target. As we are 
interested in the CSA as a function of time after stimulus 
onset, no normalization for time or movement duration is 
performed. The CSA was assumed to be zero before move-
ment onset. For the statistical analyses, we pooled the move-
ments towards the left and right, after changing the sign of 
the movements towards the left such that positive values 
correspond to the direction of the correct target. Due to the 
normalization applied, CSA does not have units.
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Fig. 4  An example of how the submovement decomposition is per-
formed, and the cumulative submovement amplitude extracted on a 
trial-by-trial basis. The best-fit submovements, shown in blue and red, 
are found in terms of velocity, fit simultaneously for the a x velocity 
and b y velocity. The lines in black show the actual velocity. The dot-
ted lines show the reconstructed trajectory from a summation of the 
submovements. c The reconstructed position. The origin, defined as 
the start point, was set on an individual basis based on a recording 
prior to the experiment d shows the normalized cumulative submove-

ment amplitude for this trial. The amplitude of the first submovement 
was 31% of the way to the right target, hence it has a normalized 
amplitude of 0.31. The amplitude of the second submovement is − 
131%, which takes it all the way to the left target. Hence, the second 
submovement has a normalized amplitude of − 1.31, and the cumula-
tive submovement amplitude (CSA) at the end of the trial is − 1. All 
trials for a given condition/target direction are averaged, by partici-
pant, for the remainder of the analysis
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In our analysis, we assume that the CSA is analogous to 
the amount of accumulated information. This is based on the 
claim that when the participant begins a submovement, they 
will use the available information to plan their movement 
(Finkbeiner, & Friedman, 2011; Friedman et al., 2013), i.e., 
they will optimally use the information at hand to plan their 
movements (Trommershäuser, Maloney, & Landy, 2008). 
We note that the CSA technique means that each submove-
ment only informs us about the decision process at the time 
of submovement onset. Thus, to sample the decision process 
at a range of times, we used three different SOAs to help 
ensure that submovements would be produced at a variety 
of times.

Fitting the activation–inhibition model

We fit a model that assumes there is an initial activation 
(A) of the irrelevant stimuli, followed by an inhibition (I), 
which we term the activation–inhibition (AI) model, based 
on the model described in Ridderinkhof (2002). We base our 
modeling on the assumption that the CSA is analogous to 
the amount of accumulated information. Further, we assume 
that the observed values for the congruent case consist of the 
sum of the accumulated information for the controlled pro-
cess and for the congruent automatic process. Similarly, the 
incongruent case is the sum of the information accumulated 
for the controlled process and the incongruent automatic 
process. The two automatic processes are assumed to have 
equal magnitude but opposite sign; we discuss this limitation 
further in the discussion. Thus, if we sum the congruent and 
incongruent components, the automatic components will be 
canceled out, and we will be left with a quantity analogous 
to the controlled process. In a similar way, if we take the 
difference of the congruent and incongruent CSAs, we are 
left with the automatic component. For both these values, we 
take half the sum/difference to keep the same scale. In this 
way, the controlled and automatic processes were derived 
from the CSA for each participant, and then averaged across 
participants. We fit a straight line to the controlled process 
(two parameters: onset time and slope). For the automatic 
process, we fit straight lines for both the activation and the 
inhibition (four parameters: activation onset time and slope, 
inhabitation onset time and slope). The parameters are found 
using a nonlinear programming solver (fminsearch func-
tion in Matlab). We compared the four parameters between 
modalities using the paired t-tests.

In addition to the modeling, we also directly compared 
the automatic process (also known as the congruence 
effect; Finkbeiner, & Friedman, 2011 or the Simon effect) 
between the two stimulus modalities, as well as the con-
trolled process. We used a permutation procedure (Blair, & 
Karniski, 1993) to determine when the quantity was greater 
than 0 (Finkbeiner, & Friedman, 2011). We quantified the 

asymmetry of the automatic process by fitting the auto-
matic process for each participant to an ex-Gaussian (the 
sum of a Gaussian and exponential distribution), which has 
the parameters μ, σ and τ. The parameters μ and σ describe 
the Gaussian, while the τ parameter quantifies the size of 
the exponential “tail”—the larger the value of τ, the larger 
the tail and the greater the asymmetry. A perfect Gauss-
ian distribution would have a τ of zero. We used the paired 
t-tests to compare the ex-Gaussian parameters between the 
modalities.

Results

Accuracy

The participants were able to perform the task, achieving 
relative high accuracy, which was defined as ending the 
movement at the correct target without touching the other 
targets (visual: median 99.7%, range 97.8–100%; somatosen-
sory: median 95.5%, range 77.3–100%). In the visual task, 
the accuracy was greater than in the somatosensory task 
(Wilcoxon signed-rank test: z = − 3.48, p < 0.001). For the 
remainder of the analysis, we only consider the correct trials.

Congruent and incongruent movements show 
different trajectories

As expected, the trajectories of the congruent and incon-
gruent movements were different, as were the trajectories 
between modalities. The mean trajectories are shown in 
Fig. 5a. The bias towards initially making movements to the 
right can be clearly observed. Additionally, the incongruent 
trajectories take a less direct, longer path to get to the target. 
We note that the left and right targets are at slightly different 
distances from the start point, because we define the target 
location for each subject in a pre-experiment calibration 
based on the location of the sensor taped on the fingernail 
while the participant touches the wooden target. The dif-
ference is caused by differences in the relative position of 
the fingernail to the target when touching the left or right 
targets.

The x velocities of the movements were fit to orthogonal 
polynomials using the OPTA procedure, and then averaged 
across participants. Due to the range of onset times of the 
movement which resulted from the experimental protocol, 
we are able to look at the trajectories as a function of onset 
time. Each trajectory represents the movements that started 
at a particular time, with the bins ranging from approxi-
mately 50–400 ms post-stimulus, see Fig. 5b, with relatively 
little difference between the conditions. As can be observed 
in Fig. 5c, for the incongruent condition, the participants ini-
tially start heading towards the wrong (direct) target (shown 
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by the negative velocities), while this is not the case for the 
congruent trials. Further, the magnitude of this velocity in 
the wrong direction decreases as a function of movement 
onset time—the darker (later) trajectories head less in the 
wrong direction.

Comparison of results to the AI model

We compared the results of the study to the AI model by 
finding components of the CSA that are analogous to the 
controlled process and the automatic process. The mean val-
ues of these quantities, together with the CSA, are shown in 
Fig. 6a, b. We then fit a straight line to the controlled pro-
cess, and activation and inhibition components to the auto-
matic process. Good fits were achieved (correlation coeffi-
cient > 0.9) for both quantities for 16 of the 18 participants: 
2 participants were not included in the subsequent analyses. 
The means and standard deviations of the fits can be found in 
Table 1, and these mean values were used to simulate the 
AI process (Fig. 6c, d). For both processes, we found that 
the automatic process started earlier than the controlled 
process [visual: automatic: 126 ± 9 ms, controlled: 163±8, 
t(15) = − 6.24, p < 0.001; tactile: automatic: 120 ± 8 ms, 
controlled: 168± 9 ms, t(15) = − 5.84, p < 0.001], although 
the onset times of both processes were not significantly dif-
ferent between the stimulus modalities. The slope of the 
controlled process was significantly higher for the visual 
stimuli, corresponding to a larger drift rate. Likewise, for the 
automatic process, the slope for both the automatic activa-
tion and inhibition was higher for the visual stimuli, i.e., the 
Simon effect had a shorter duration for the visual stimuli.

Time course of the Simon effect

Differences can be observed in the decision process between 
the visual and somatosensory stimuli, as was quantified 
above with the AI model. To allow a more fine-grained com-
parison, we use permutation analysis to determine when the 
automatic process (congruence/Simon effect) and the con-
trolled process differ from zero, which is shown in Fig. 7.

The automatic process (Fig. 7a) begins slightly earlier for 
the visual stimuli (104 ms) than the somatosensory stimuli 
(125 ms), but the effect of both ended at approximately the 
same time (650 ms). The lack of difference in end times 
may partially be a result of the significantly larger varia-
tion between participants for the somatosensory stimuli. 
However, there is a difference in the symmetry of the auto-
matic process. While for the visual task, the automatic 
process is approximately symmetrical, for the somatosen-
sory task, it has a much longer tail. This is confirmed by 
comparing the τ value from ex-Gaussians fit for each par-
ticipant. For the somatosensory stimuli, τ was significantly 
larger (0.13 ± 0.02) than for the visual stimuli (0.08 ± 0.01), 
t(17) = − 3.1, p = 0.007, although for both modalities, the τ 
value was significantly greater than 0 [visual: t(17) = 6.3, 
p < 0.001; somatosensory: t(17) = 8.6, p < 0.001].

We note that the time of the peak magnitude of the effect, 
the μ parameter, was also later for the somatosensory stimuli 
(254 ± 14 ms) compared to the visual stimuli (238 ± 14 ms), 
while the σ parameter was not significantly different between 
the modalities [visual: 0.057 ± 0.007; somatosensory: 
0.065 ± 0.009, t(17) = − 0.74, p = 0.47]. The controlled pro-
cess (Fig. 7b) starts earlier for the visual (121 ms) compared 
to the somatosensory stimuli (133 ms), as defined by the 
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Fig. 5  a Mean trajectories for congruent and incongruent movements, 
averaged across all participants, for visual and somatosensory stimuli 
to the two targets. Note that as in most experiments with this response 
type, there is an initial bias to move towards the right. b Mean move-
ment initiation time (MIT) bins used in the OPTA analysis, averaged 
across left and right movements and across participants. c Mean x 
velocities, averaged across left and right movements and across par-

ticipants, binned according to movement onset time, after the OPTA 
procedure. The darker the line, the later the onset time. Positive x 
velocities correspond to the direction of the correct target. Note that 
the movements are plotted relative to movement onset time (Fig. 5b), 
and not stimulus onset time, and there is the same number of bins 
(shown in Fig. 5b) for each condition
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times when it is significantly different from zero. The dif-
ferences between these values and the values presented in 
Table 1 are due to the different analysis techniques.

Discussion

In this study, we compared the time course of the Simon 
effect for visual and somatosensory stimuli using arm 
movements. Based on the cumulative submovement 

amplitudes, we were able to recover the controlled and 
automatic processes used by the participants, which 
showed a strong similarity to the activation/inhibition pat-
terns predicted by the activation–inhibition (AI) model. 
Using this analysis, we confirmed the previously reported 
quantitative differences in the Simon effect for visual and 
somatosensory stimuli. We found that a single model was 
able to describe both the visual and somatosensory Simon 
tasks. The differences in parameter fits are consistent with 
an activation of the automatic process that is inhibited at 
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Fig. 6  Mean cumulative submovement amplitudes and AI model pre-
dictions. Cumulative submovement amplitudes for the a visual and b 
somatosensory trials, averaged across participants. The green and red 
lines correspond to the mean cumulative submovement amplitudes 
in the congruent and incongruent cases, respectively. The purple and 
blue lines represent the congruent and incongruent automatic compo-

nents, respectively. The black line is the controlled process. c, d The 
mean behavior of the AI model with the best-fit parameters to the 
CSA data. e, f The decomposition of the automatic activation (i.e., 
the purple line from c to d) into the activation (A) and inhibition (I) 
components. For both models, the best-fit data were found for each 
subject (see Table 1); the graphs show the average across subjects
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a significantly slower rate for the somatosensory stimuli 
compared to the visual stimuli.

The results presented here are consistent with the time 
difference rather than magnitude difference account of the 
Simon effect (Finkbeiner, & Heathcote, 2016; Proctor et al., 
2011). We found that the automatic process starts signifi-
cantly earlier than the controlled process. The automatic 
process reaches its peak relatively early (after approximately 

250 ms) and then decays, whereas the controlled process 
accumulates evidence in an approximately linear fashion, 
as would be expected by a diffusion process. Further evi-
dence of the temporal differences between the automatic 
and controlled processes was shown by the initial velocity 
of incongruent movements that headed in the direction of 
the stimuli location (Finkbeiner, & Heathcote, 2016). This 
is also similar to the partial errors observed early in EMG 
recordings (Servant et al., 2016).

A primary finding of this study was that the somatosen-
sory stimuli showed lower values for the slopes for all three 
processes (controlled activation, automatic activation and 
inhibition) compared to the visual stimuli, but not for onset 
times of these processes, as was predicted. In contrast, analy-
sis of the time course of the Simon effect did find small 
differences in the onset times, although this technique does 
not provide a way to test whether this difference is statisti-
cally significant. We assumed that as both stimuli are clearly 
distinguishable, they would have similar rates of uptake [i.e., 
mean slope, similar to the drift rate in diffusion models (Rat-
cliff, 2006)], although the differences in slopes observed 
did not support this hypothesis. In earlier studies (Salzer, 
2013; Salzer et al., 2014), we demonstrated that the aver-
age response time in the visual Simon task was 100–180 ms 
faster than in the somatosensory Simon task. This finding 
led us to assume that the processing of the somatosensory 
information would be slower. Different onset times would 

Table 1  Model parameters fit to the controlled and automatic pro-
cesses, calculated from the cumulative submovement amplitudes

The parameters were fit for each participant, and the values shown 
are the mean ± standard error across the 16 participants where suc-
cessful fits could be made for both stimuli. The last two columns are 
the result of comparisons between the parameters fit to the visual and 
somatosensory stimuli using paired t-tests (t score and p value)

Parameters Visual Somatosensory t(15) p value

Controlled process
Onset time (ms) 163 ± 8 168 ± 9 − 0.78 0.45
Slope  (s−1) 3.52 ± 0.18 2.31 ± 0.08 8.14 < 0.001
Automatic process
Activation onset time 

(ms)
126 ± 9 120 ± 8 0.72 0.48

Activation slope  (s−1) 1.80 ± 0.16 1.13 ± 0.13 4.02 0.001
Inhibition onset time 

(ms)
117±7 100±13 0.97 0.35

Inhibition slope  (s−1) 5.74 ± 0.42 3.38 ± 0.28 5.36 < 0.001

Fig. 7  a Automatic process (congruence/Simon effect): the CSA for 
the congruent stimuli minus the CSA for the incongruent stimuli, 
pooled for left and right movements. The shaded area is the 95% 
confidence intervals, it is shown only when the lower bound of the 
confidence interval is greater than zero. The congruence effect begins 

slightly earlier for the visual stimuli and ends at approximately the 
same time, but it should be noted that there is much more variance 
between participants for the somatosensory task. b Controlled pro-
cess: the sum of the CSA for the congruent and incongruent stimuli
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have suggested differences in initial processing times of the 
stimuli (i.e., before it contributes to the decision-making 
process), however, this was not observed. The lack of differ-
ence is likely due to the similarity in the time at which soma-
tosensory and visual information are first available to the 
cortex, as has been shown in previous studies. For example, 
Pruszynski et al. (2016) have found that corrections follow-
ing perturbation onset took approximately 110 ms in either 
modality, which is similar to the times we found for the start 
of the automatic responses. In another study, it was found 
that the internal sensorimotor processing times before per-
forming fast saccades were similar for visual (~ 140 ms) and 
for proprioceptive feedback (~ 126 to 136 ms) (Crevecoeur, 
Barrea, Libouton, Thonnard, & Lefèvre, 2017). Rather, 
the observed differences in the slopes—lower slopes for 
the somatosensory stimuli, suggest that there is a slower 
uptake of somatosensory information compared to visual 
information as a source for decision making, for both the 
controlled and automatic processes, but not slower initial 
access. The reason for this difference is an area that requires 
further investigation, although we note that it is in general 
problematic to match the salience and difficulty levels for 
stimuli from different modalities.

In contrast to comparisons of congruent and incongru-
ent reaction time distributions (congruency effects), which 
can show hard-to-explain differences due to modality, direc-
tion, and external cues (Salzer, 2013), this technique allows 
a disassociation of the different contributions to processing 
time. We note that a recent study showed that the duration of 
the stimuli does not affect the time course of the automatic 
response (Ellinghaus, Karlbauer, Bausenhart, & Ulrich, 
2018), whereas in this study we showed that the modality 
does have clear effects on the time course of the automatic 
response.

There is a debate in the literature regarding the effect 
of the stimuli location, as to whether the spatial aspect 
spontaneously decays with time (Hommel, 2009), or is 
actively suppressed (Ridderinkhof, 2002; van den Wilden-
berg, Wylie, Forstmann, Burle, Hasbroucq, & Ridderink-
hof, 2010). While the analysis presented here is not able to 
differentiate between the two possibilities, it does provide 
constraints on the nature of the automatic process, in that 
the time course of the congruence effect is derived from the 
data and is observed in multiple modalities. In this study, 
the extraction of the automatic and controlled processes is 
essentially “model-free”, in that we did not need to assume 
anything about their time course or shape. In particular, the 
change in modality caused a difference in the shape of the 
activation of the automatic process. While a difference in the 
width of the Gaussian would speak in favor of spontaneous 
decay, a difference in the exponential parameter would sug-
gest a difference in active suppression. While the σ (width) 
parameter was not different between the modalities, the 

exponential parameter of the automatic process τ is larger 
for the somatosensory stimuli, i.e., the decay takes much 
longer than the increase to the peak effect. These differences 
between modalities were also observed in the different fits 
to a gamma function. The slower decay for the somatosen-
sory stimuli is compatible with the notion of weaker selec-
tive suppression of the automatic process proposed by Rid-
derinkhof (2002).

While this study did not perform computational modeling 
of the trajectories, we note that the patterns that emerged 
from the submovement analysis are consistent with a gradual 
accumulation of evidence (Friedman et al., 2013), as sub-
movements made prior to a final decision only go part of 
the way towards the target. Recent computational models, 
based on the drift diffusion model or similar processes have 
shown significant success in modeling multiple observable 
aspects (Ulrich et al., 2015; van Maanen, Turner, & Forst-
mann, 2015). The technique used in this study provides a 
more direct way of observing the automatic processes than 
is possible when only using response times.

Although arm movements allow us to obtain more than 
a single data point to fit per trial, and the ability to access 
the decision state before a final decision is made, there are 
also limitations to this approach. In particular, using arm 
movements necessarily changes the strategy used by the 
participants. For example, once a movement has been initi-
ated in a certain direction, there exists a cost involved in 
changing direction (Marcos et al., 2015; Moher, & Song, 
2014). Also, the total duration of the movements is longer 
than the typical reaction times observed, which may also 
affect the decision process (Wispinski, Gallivan, & Chap-
man, 2019). Additionally, the analysis performed was based 
on the assumption that difference between the controlled 
and observed processes in the two directions (i.e., congru-
ent and incongruent) is equal in magnitude but have oppo-
site signs, which may not always be the case (Aisenberg, 
& Henik, 2012). For the somatosensory Simon task, it is 
problematic to achieve a neutral condition, due to problems 
with placing the tactors on the middle of the back, i.e., on 
the spine (Salzer et al., 2014). We also note that our model 
assumed that the automatic activation and suppression are 
both linear processes, which may not be the case (Usher, & 
McClelland, 2001). This limitation likely led to the finding 
that the inhibition started before the automatic activation, 
which should not be possible (see Table 1). Determination 
of the time course of the inhibition process should be pos-
sible in the future by comparing the suitability of different, 
nonlinear models, or perhaps using process models (such as 
the drift diffusion model) for parts of the process. Further, 
it is possible that rather than active inhibition occurring, the 
process simply decays with time—additional modeling work 
may help in distinguishing between these two possibilities.
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In conclusion, in this study, we examined the differences 
between the visual and somatosensory versions of the Simon 
task. By examining the intent of the participants, as meas-
ured using cumulative submovement amplitude, we were 
able to extract processes analogous to the controlled and 
automatic processes described in the activation–inhibition 
model. We found that the same relatively simple model was 
able to accurately explain the movements performed for 
both visual and somatosensory Simon effects. The differ-
ences between the modalities were observed not in the onset 
of activation, but rather the rate of activation and inhibi-
tion, i.e., these differences were mostly quantitative rather 
than qualitative. The novel technique described here has the 
potential to help deepen our understanding of the processes 
involved in resolving conflict during decision making.
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