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ABSTRACT

Introduction: The objective of this study was to

evaluate the potential of exercises performed in

a 2D video-capture virtual reality (VR) training

environment to improve upper limb motor

ability in stroke patients compared to those

performed in conventional therapy.

Methods: A small sample randomized control

trial, in an outpatient rehabilitation center

with 12 patients with chronic stroke, aged

33–80 years, who were randomly allocated to

video-capture VR therapy and conventional

therapy groups. All patients participated inNIH Clinical Trial Registration: NCT01388400.
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four clinical evaluation sessions (pre-test 1,

pre-test 2, post-test, follow-up) and nine

45-minute intervention sessions over a 3-week

period. Main outcomes assessed were Body

Structure and Function (impairment: Fugl–

Meyer Assessment [FMA]; Composite Spasticity

Index [CSI]; Reaching Performance Scale for

Stroke), Activity (Box and Blocks; Wolf Motor

Function Test [WMFT]), and Participation

(Motor Activity Log) levels of the International

Classification of Functioning.

Results: Improvements occurred in both

groups, but more patients in the VR group

improved upper limb clinical impairment

(FMA, CSI) and activity scores (WMFT) and

improvements occurred earlier. Patients in the

VR group also reported satisfaction with the

novel treatment.

Conclusions: The modest advantage of VR

over conventional training supports further

investigation of the effect of video-capture VR

or VR combined with conventional therapy in

larger-scale randomized, more intense controlled

studies.

Keywords: Clinical outcomes; Intervention;

Reaching; Stroke; Virtual reality

INTRODUCTION

Over one million people experience a new

stroke every year in Europe and the United

States and between 30% and 66% of those

affected have persistent deficits in upper limb

(UL) function 6 months after stroke [1], which

affects the ability of individuals to participate in

activities of daily living and diminishes their

quality of life [2]. The aim of rehabilitation is

to limit post-stroke functional impairments

that result from brain damage and to enlarge

cortical representation and functional

connectivity through neuroplastic mechanisms.

Research has focused on exploring ways to

drive and shape neuroplasticity to improve

functional outcomes after stroke. For example,

task-specific training causes reorganization in

sensory and motor cortices in adult mammals

[3] and enhanced learning occurs when

participants practice a variety of related tasks

[4, 5]. Motor learning is largely dependent on

the type of movements practiced [6], intensity

of practice [7] as well as environmental context

in which practice occurs [8], including

feedback [9]. These key elements of motor

learning need to be integrated into

rehabilitation paradigms aimed at motor

recovery to maximally engage neuroplastic

mechanisms [8, 10].

Virtual reality (VR) is a computer technology

incorporating relevant feedback into simulated

environments [11]. For UL motor rehabilitation,

users interact with virtual objects directly via

hand/body movements or through haptic or

nonhaptic interfaces (e.g., glove, joystick,

mouse), and perform actions that engender a

feeling of being present in the simulated

environment. VR may facilitate the application

of motor learning and neuroplasticity principles

during rehabilitation by adjusting stimuli to

respond to actions in real-time and by

incorporating and manipulating feedback [12].

Although studied as an evaluation and

treatment tool for stroke for 15 years, evidence

regarding the effectiveness of VR applications

for rehabilitation is still sparse. VR-based

rehabilitation is a relatively young,

interdisciplinary field whose trajectory can be

modeled by the Technology Hype Cycle

described by the Gartner Group and applied to

this fieldfirst byRizzo and Kim [12,13]. Theearliest

VR studies reported primarily on the development

of novel applications and the demonstration of

their feasibility and usability on small numbers

of participants. As the field developed, the focus
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of research was directed towards small studies,

often without a control group. One study

evaluated the effects of a 4-week VR-based

intervention (60 min/day, 5 days/week) on

10 patients with chronic stroke [14]. The UL

exercise intervention, provided by a video-

capture VR system (IREX�, GestureTek, Inc.,

Toronto, Canada) using a variety of games,

resulted in cortical reorganization according to

fMRI scans.

Different types of VR environments have

system-specific attributes but their relative

benefits are largely unidentified. These systems

have been described in the literature [15–19]

and systematic reviews [20–23], which have

evaluated the strength of evidence concerning

the effectiveness of VR as a tool for stroke

rehabilitation. The majority of studies

concerned individuals who were being treated

to improve UL recovery. Each review concluded

that while the data were promising, there is a

need to improve the level of research evidence

by carrying out randomized control trials (RCT).

Most systematic reviews have included a

heterogeneous mix of VR applications under

the common theme of ‘‘VR treatments’’ (e.g.,

[15]). Variations include 2D and 3D interactive,

video-capture, keyboard- or mouse-based

interfaces, and recreational game systems

viewed on monitors, screens, or through head-

mounted displays (HMD). It is likely that

training in diverse VR environments leads to

different functional outcomes due to

differences in viewing media and type of task

practice (e.g., perception of object location [24,

25]). For example, reaching movements made

in a video-capture 2D environment viewed on a

large screen were shorter, less straight, less

accurate, and involved smaller shoulder and

elbow joint excursions compared to those

performed in an equivalent physical

environment [26]. In contrast, HMD-viewed

reaching movements in 3D VR were more

similar to those made in a physical

environment [27]. Because this heterogeneity

makes the relative advantages and drawbacks of

different VR platforms difficult to assess, the

authors focused on determining the effects of

therapy in a single type of VR environment (2D

video-capture) on UL motor improvements in

patients with stroke, compared to an equivalent

amount of practice in a conventional training

environment.

Before proceeding with a large-scale RCT, it is

important to identify clinical benefits

associated with practicing movements that

may differ in quality than those performed in

a physical environment. The authors designed a

small sample RCT to compare conventional

versus 2D video-capture VR-based interventions

for treating reaching deficits in patients with

chronic stroke [28]. Assuming that the

environmental context in which movement is

practiced would encourage patients to engage

in more meaningful practice and that the

virtual environment (VE) provides enhanced

feedback (e.g., [29]), the authors hypothesized

that stroke patients practicing movements in

VR would have greater clinical UL motor

improvements than those practicing in a

physical environment.

METHODS

Participants

Patients were included if they had sustained a

unilateral left- or right-sided stroke more than

3 months previously, had no hemispatial

neglect or uncorrected visual field deficits,

including hemianopia, and could understand

and follow instructions (no receptive aphasia,

mini-mental state evaluation [25) [30].

Participants were excluded if they had
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shoulder or arm pain, or lack of endurance as

judged by their treating physician. Of

50 eligible patients, 14 (33–80 years, 10 months

to 5 years after first stroke) were recruited

from discharge lists of a large rehabilitation

center and randomly allocated to one of

two intervention groups having the same

therapeutic goals: VR (n = 8) and Conventional

(n = 6) (Fig. 1). Randomization was carried out

using a coin toss by an individual who was not

involved in either participant assessment or

intervention. Two patients withdrew from the

VR group before commencement of the

intervention because of transportation and

financial difficulties (see Fig. 1—consort

diagram). All participants signed informed

consent forms approved by the Institutional

Ethics Review Board.

Procedures

Four clinical evaluations and nine intervention

sessions were delivered by different personnel. A

clinician (occupational therapist), experienced

in neurological rehabilitation and blinded as to

treatment group allocation, performed the

entire battery of tests on individual subjects.

All clinical tests used have previously published

evidence of acceptable levels of validity and

inter-rater reliability. Two clinical evaluations

separated by 1 week were performed before the

intervention: one was done immediately after

and one was done 1 month after the

intervention.

During the intervention sessions, VR therapy

focused on goal-directed reaching tasks by

the affected arm via virtual games and a

Fig. 1 Consort statement
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virtual supermarket (e.g., Birds & Balls, Soccer,

Volleyball, VMall) [31]. The reaching movements

combined shoulder flexion to *130�, shoulder

abduction to *60�, elbow extension to *180�,
and wrist flexion and extension. Reaching

movements were made into all areas of the arm

workspace (e.g., ipsilateral, contralateral, midline,

upper, and lower) to accomplish discrete and

sequential reaching movements. Practice in the

VE did not include grasping and manipulation

tasks. Conventional therapy consisted of

occupational therapy, including exercises

involving reaching for and holding cones, cups,

and other objects in all motion planes with and

without external loading. These tasks were

performed in a standard clinical treatment room.

The two types of therapy were equivalent in

duration and type of feedback provided by

the therapist concerning the quality of the

reaching movements (e.g., amount of elbow

extension, shoulder flexion) as well as the

use of compensatory movements (e.g.,

trunk displacement). Participants in both

environments were encouraged to work as

hard as possible but the number of trials was

not prescribed to avoid making the activities

artificial. For both groups, the initial level of

task difficulty was matched to patient

impairment level and increased throughout

the intervention to ensure that practice

remained challenging to the individual.

Instruments

The VR therapy was done on the Gesture

Xtreme� (GestureTek, Inc. Toronto, Canada)

video-capture system [19]. Users stood or sat in

a demarcated area with a chroma-key backdrop

and viewed a simulated VE on a 3400 screen. The

user’s image was recorded and displayed within

the VE, which responded to user gestures in

real-time.

Primary Outcome Measures

Primary outcomes were clinical measures of UL

performance at three levels of the International

Classification of Function [32]. At the Body

Structure and Function level, UL impairment

was assessed with Fugl–Meyer Arm Scale (FMA)

[33] (total score = 66), spasticity in elbow flexors

was assessed with the Composite Spasticity

Index (CSI) [34] in which scores of 0–6, 7–9,

and 10–16 correspond to mild, moderate,

and severe spasticity respectively and motor

compensations were assessed with the Reaching

Performance Scale for Stroke (RPSS) [35], which

evaluated six movement components for a total

score of 18. To assess the UL Activity level, the

authors used the Box and Blocks test (BBT) [36] in

which the number of blocks transferred by the

more affected hand was expressed as a

percentage of the number transferred by the

less affected hand and the Wolf Motor Function

Test (WMFT) [37], which assessed 15 arm

function tasks. For the WMFT, results are

reported as the mean Functional Abilities Scale

Score and the mean time score. At the

Performance level, patients completed the

30-item Motor Activity Log (MAL) [38], which

assessed the amount (Amount of Use [AOU])

and the type (Quality of Movement [QOM]) of

arm use in everyday life situations. Finally,

social validity [39], defined as the social

acceptability of the intervention and its

impact on patients, was monitored by logging

patients’ comments throughout therapy. This

also assessed patient satisfaction/dissatisfaction

with therapy.

Statistical Analysis

Owing to the small sample size and

heterogeneity, the authors used a single subject

research design (SSRD) with baseline (pre-test 1,
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pre-test 2), immediate post-intervention

(post-test) follow-up and (follow-up) contrasts

[40]. SSRD alone or combined with case reports

and group analysis has been used previously to

evaluate treatment outcomes in children and

adults with motor deficits [41–43].

Intervention effects for each clinical outcome

in each patient were assessed by calculating

effect sizes (ESs) obtained through standard

mean differences. For single subject designs,

the ES represents the proportion of points that

are less than or greater than the average points

in the baseline phase. The authors considered ES

of[0.30 to be significant and those[0.50 to be

large, as at this level, more than 69% of data

points differ from the baseline [44, 45].

There were no differences between pre-test 1

and 2 scores for all of the outcome measures

(P values of paired t-tests ranged from 0.05 to

0.905) except for the WMFT mean score in the

conventional group (P\0.03). For these

outcomes, the second pre-test scores were used

as the baseline values for each test. For the

WMFT mean score in the conventional group,

the authors used the higher score of the two

pre-tests. Between-mean differences of post-test

or follow-up assessments were divided by pre-

test standard deviation (SD).

RESULTS

Effect of Treatment

All subjects in both groups completed all study

phases. Groups were similar in age, gender, and

time since lesion with no between-group

differences (Table 1). The VR group included

three men and three women and had a mean

age of 58.1 ± 14.6 years. The Conventional

group also included three men and three

women with a mean age of 59.8 ± 15.1 years.

Hand dominance was based on patient report of

which hand was used for writing before the

stroke (Table 1). Mean (SD) scores for all clinical

outcomes for each group and time period are

listed in Table 2. Mean values of initial, post-test

and follow-up scores are listed for individual

subjects in each group in Tables 3 and 4.

At the Body Structure and Function level,

more patients in VR improved FMA scores at

post-test compared to conventional therapy (VR:

four of six; Conventional: one of six, Table 3).

Two patients in the VR group and one in

the conventional group maintained the

improvement at follow-up. In the conventional

group, two additional patients improved only at

follow-up. Spasticity decreased in both groups

(VR: three of six at post-test, four of six at follow-

up; Conventional: two of six at post-test, four of

six at follow-up). Changes in the RPSS also

occurred in both groups, with four and three

compared to three and four patients improving

reaching performance at post-test and follow-up

for VR and Conventional, respectively (Table 4).

At the Activity level, only one or two subjects

improved performance on BBT in each group.

However, there was a stronger effect of training

on WMFT in the VR group (mean score) with

five of six subjects improving at post-test

compared to three of six subjects in the

Conventional group. Improvements at follow-

up were maintained in all five subjects in the VR

group and in two of six subjects in the

Conventional group. Timed WMFT scores

improved in one to two subjects per group, but

worsened in three of six subjects who received

conventional training. This performance

decrease was maintained in one of these

subjects. In VR, one subject’s performance on

the timed WMFT worsened at post-test.

The frequency (MAL-AOU) and quality of

(MAL-QOM) of daily arm use was unchanged in

both groups (Table 2). However, patients in VR

reported being more motivated to improve
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affected-arm reaching ability, that they felt

more challenged by the intervention, and that

their enjoyment of the activity helped them

persist in the task even when it was difficult or

they felt fatigued. Both patients and therapists

reported a steady progression in the ability of

patients to cope with an increasing level of

difficulty as the VR intervention continued. In

particular, VR participants commented on the

realism of the experience, which was enhanced

by the visual and auditory feedback during the

games. All VR participants indicated that

the VR-based exercise was more dynamic,

interesting, meaningful, and motivating than

their previously experienced exercises

performed with conventional equipment and

that participants tended to make more

movements in the VR environment. Therapists

noted that VR participants tended to take more

initiative during therapy, requesting specific

virtual tasks that they found to be effective.

None of the patients, including the more

elderly participants, regarded the need to cope

with the VR technology as a deterrent to their

participation, and no adverse effects of training

in either environment were reported.

Table 1 Demographic data of patients with stroke

Age Gender Time since lesion (years) Side of dominancea Side of hemiparesis Lesion site

Conventional therapy

1 55.0 F 3.1 R R BG, IC

2 58.0 M 4.5 R R –

3 75.0 M 3.8 R R BG, IC

4 70.0 F 2.7 R L Corona radiata

5 68.0 M 3.7 R L –

6 33.0 F 5.0 R L Frontotemporal, BG

Mean 59.8 3.8

SD 15.1 0.9

Virtual reality therapy

1 63.5 F 3.0 L R –

2 66.0 M 3.7 R L –

3 80.0 M 2.0 L R Frontal–parietal, BG, IC

4 50.0 M 2.0 R R Posterior IC

5 39.0 F 3.8 R L Subcortical

6 50.0 F 0.8 R R Parietal–occipital

Mean 58.1 2.6

SD 14.6 1.2

BG basal ganglia, F female, IC internal capsule, L left, M male, R right
a Based on patient report of hand used for writing and other daily activities
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Table 2 Group mean (SD) data for clinical tests at four time periods: pre-test 1, pre-test 2, post-test, and follow-up test

Pre-test 1 Pre-test 2 Post-test Follow-up test

Body Structure and Function Level: Impairment

FMA (66)

Conventional 42.3 43.9 44.9 48.0

(13.6) (13.0) (11.7) (11.6)

Virtual reality 40.1 42.3 47.3 46.3

(13.6) (11.8) (11.9) (10.0)

CSI (16)

Conventional 8.5 9.2 8.7 7.5

(2.7) (2.2) (1.4) (1.0)

Virtual reality 7.7 7.2 6.2 6.0

(1.9) (1.7) (2.9) (2.3)

RPSS (18)

Conventional 11.5 10.5 12.8 13.6

(4.7) (4.1) (3.6) (4.0)

Virtual reality 13.3 13.7 15.0 14.3

(4.1) (3.1) (3.0) (3.2)

Activity Level: Function

BBT (% less-affected side)

Conventional 20.5 23.8 23.9 30.1

(18.6) (21.1) (21.2) (23.8)

Virtual reality 29.5 29.8 30.3 32.2

(26.9) (26.7) (27.7) (28.0)

WMFT (total)

Conventional 47.5 50.2 53.2 55.3

(13.6) (13.8) (20.0) (17.7)

Virtual reality 47.0 48.2 54.3 55.7

(16.4) (14.0) (16.1) (16.3)

WMFT (time; s)

Conventional 14.3 12.0 14.8 12.4

(11.5) (8.4) (13.4) (10.9)

Virtual reality 15.4 14.5 14.8 12.4

(9.1) (9.4) (10.5) (7.5)
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DISCUSSION

The authors evaluated the potential of a 2D

video-capture VR training environment to

improve UL motor ability in stroke patients

compared to conventional therapy via a small

sample RCT. Although improvements occurred

in both groups, more patients in VR improved

UL clinical impairment at the ICF Body

Structure and Function Level (FMA, CSI) as

well as scores at the Activity level of the ICF

(WMFT). Changes did not occur at the

Performance level and the WMFT was found

to be more sensitive to post-practice changes

than the MAL. Participants expressed

satisfaction with the novel treatment.

The authors found that clinical impairment

and activity improved to the same or better extent

when therapy was delivered in the 2D VR

environment as compared to the conventional

physical environment. These improvements

occurred in spite of evidence that movement

patterns used to produce reaching movements

might be different from those performed in

physical environments for equivalent tasks. In a

study comparing the kinematics of reaching into

different parts of the arm workspace in an IREX VR

environment, movements were made in a

substantially different way from those made to

equivalent targets in a physical environment [26].

That study concluded that movements in the 2D

VR environment were affected by the lack of

environmental depth cues [46] such that sagittally

directed reaching movements were viewed as

occurring in the coronal plane. Nevertheless, in

spite of the potentially altered movement patterns

in the video-capture VR, improvements in clinical

impairment and activity occurred.

One explanation for better clinical outcomes

is that the VR environment allowed patients to

practice different combinations of joint rotations

that were unconstrained by physical task

requirements (e.g., having to adopt a specific

orientation of the hand to enable grasping of a

physical object). Thus, by practicing movement

combinations with fewer constraints in VR,

Table 2 continued

Pre-test 1 Pre-test 2 Post-test Follow-up test

Participation Level: Participation

MAL-QOM

Conventional 1.18 1.27 1.72 1.80

(1.53) (1.51) (1.84) (2.06)

Virtual reality 1.22 1.18 1.08 1.37

(1.14) (1.15) (1.08) (1.32)

MAL-AOU

Conventional 1.18 1.23 1.65 1.57

(1.57) (1.53) (1.87) (1.92)

Virtual reality 1.10 1.13 1.08 1.20

(1.06) (1.05) (1.12) (1.15)

AOU Amount of Use, BBT Box and Blocks, CSI Composite Spasticity Index, FMA Fugl–Meyer Assessment, MAL Motor
Activity Log, QOM Quality of Movement, RPSS Reaching Performance Scale for Stroke, WMFT Wolf Motor Function Test
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patients may have learned more effective ways to

combine joint rotations to accomplish tasks on

clinical tests [47]. Having more effective

movement does not necessarily imply that the

movement is of better quality. In our study, not

all of the functional improvements were

accompanied by improvements in movement

quality. Indeed, only one subject (subject 1) in

the conventional group improved both UL

function (WMFT) and arm movement quality

(RPSS), whereas a larger number of patients in the

VR group (three; patients 1, 3, and 5) improved

both function and quality (Tables 3, 4). A better

understanding of whether compensatory

movement patterns accounted for clinical

improvements can only be gained by a

Table 4 Individual mean differences between post- and pre-tests (post–pre) and between follow-up and pre-tests
(FUP-pre), and effect sizes (ES) for scores on functional scales

Conventional Virtual reality

Subject Difference post–
pre

ES Difference FUP-
pre

ES Difference post–
pre

ES Difference FUP-
pre

ES

BBT

1 -1.92 -0.09 5.74 0.27 -4.34 -0.16 -6.44 -0.24

2 0.00 0.00 0.00 0.00 -3.28 -0.12 -2.91 -0.11

3 0.20 0.01 -3.46 -0.16 -0.13 0.00 12.95 0.49

4 -3.01 -0.14 -2.63 -0.13 5.39 0.20 2.31 0.09

5 5.46 0.26 7.97 0.38 -3.86 -0.14 -0.89 -0.03

6 0.00 0.00 0.00 0.00 9.45 0.35 9.45 0.35

WMFT (mean)

1 11.0 0.59 14.0 0.75 6.0 0.43 4.0 0.29

2 1.0 0.05 4.0 0.22 6.0 0.43 8.0 0.57

3 9.0 0.48 5.0 0.27 10.0 0.71 14.0 1.00

4 0.0 0.00 4.0 0.22 8.0 0.57 8.0 0.57

5 7.0 0.38 6.0 0.32 6.0 0.43 10.0 0.71

6 -10.0 -0.54 -2.0 -0.11 1.0 0.07 1.0 0.07

WMFT (time)

1 -1.26 -0.15 -1.53 -0.18 -2.95 20.31 1.10 0.12

2 4.26 0.51 1.63 0.19 4.46 0.47 -1.47 -0.16

3 -7.30 20.87 -6.41 20.76 -0.30 -0.03 -1.16 -0.12

4 6.80 0.81 0.97 0.12 -0.89 -0.10 -0.71 -0.08

5 0.15 0.02 0.69 0.08 2.49 0.26 -4.36 20.46

6 14.07 1.67 7.18 0.86 -0.86 -0.09 -5.79 20.62

Bolded and italicized numbers indicate significant positive and negative effects, respectively
BBT Box and Blocks Test; WMFT Wolf Motor Function Test
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concomitant analysis of movement kinematics

[48].

Specific attributes of the VR system may have

accounted for better outcomes in the VR group.

These include the opportunity to practice tasks

in a variety of simulated settings in which

patients may be motivated to interact

repeatedly, and that the level of difficulty of

the activity can be graded to the motor ability

level of the patient. Another important attribute

is the provision of different types of feedback.

Feedback during VR treatment was provided by

the therapist in combination with system-based

feedback. The enhanced feedback in the VR

environment may have allowed patients to learn

more effective movement through both

extrinsic and intrinsic mechanisms [49].

Indeed, a recent study comparing practice in

VR and conventional environments that was

matched for intensity and feedback concluded

that patients in the VE group incorporated

feedback more effectively than those in the

conventional environment as improvements in

reaching movements were obtained with less

motor compensation [50].

Two-dimensional video-captureenvironments

have the potential to be used in rehabilitation as

they are relatively low cost, easy to use, and

developed specifically to address rehabilitation

goals such as sitting and standing balance

and goal-directed reaching [19]. However,

this environment has specific characteristics

that likely influence its effectiveness for

UL rehabilitation. In a video-capture VR

environment, users see a projected mirror image

of themselves (third-person view) instead of a first-

person view, which includes their virtual armand/

or hand. When movements are performed from a

first-person perspective, kinesthetic information

is fed back to the system from the moving arm.

However, from a third-person perspective, visual

and kinesthetic information do not match,

requiring a visuomotor transformation [51]. In

healthy subjects, movement representations may

be comparable when viewed from different

perspectives as the time to complete a grasping

movement is similar during executed or imagined

tasks from a first- or third-person perspective [52].

However, this may not be true when visuomotor

transformation areas such as parietal cortex

sustain stroke-related damage [53]. Nevertheless,

the finding of the current study, that patients with

stroke could improve clinical outcomes when

practicing in 2D video-capture VE alone, suggests

they were able to derive benefits of the VE practice

environment regardless of the potential

differences in sensorimotor representation and

transformation. The positive results of UL practice

in VE suggest that it may be considered as an

adjunct treatment in clinical settings to increase

the amount of arm movements and, hence, the

intensity of UL rehabilitation.

Study Limitations

Despite these encouraging results, it is not yet

possible to conclude from this and other studies

that VR is more effective than conventional UL

therapy because of the small sample size.

However, the current advantage of VR training

over conventional training (i.e., more and earlier

changes in UL performance), adds to the steadily

increasing body of evidence and supports further

investigation of the effect of video-capture VR

alone or as an adjunctive therapy combined with

conventional therapy in larger-scale RCTs.
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