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aSchool of Psychological Sciences, University of Newcastle, Australia; bDepartment of Physical Therapy, Tel Aviv University, Tel Aviv, Israel; cSchool 
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ABSTRACT
Assessing the cognitive impact of user interfaces is a shared focus of human-computer interaction 
researchers and cognitive scientists. Methods of cognitive assessment based on data derived from the 
system itself, rather than external apparatus, have the potential to be applied in a range of scenarios. 
The current study applied methods of analyzing kinematics to mouse movements in a computer-based 
task, alongside the detection response task, a standard workload measure. Sixty-five participants 
completed a task in which stationary stimuli were tar;geted using a mouse, with a within-subjects factor 
of task workload based on the number of targets to be hovered over with the mouse (one/two), and 
a between-subjects factor based on whether both targets (exhaustive) or just one target (minimum- 
time) needed to be hovered over to complete a trial when two targets were presented. Mouse move
ment onset times were slower and mouse movement trajectories exhibited more submovements when 
two targets were presented, than when one target was presented. Responses to the detection response 
task were also slower in this condition, indicating higher cognitive workload. However, these differences 
were only found for participants in the exhaustive condition, suggesting those in the minimum-time 
condition were not affected by the presence of the second target. Mouse movement trajectory results 
agreed with other measures of workload and task performance. Our findings suggest this analysis can be 
applied to workload assessments in real-world scenarios.

1. Introduction

We live in a time when a driver can speak to their car, and the car 
can speak back. New technology has been developed to deliver 
information in new ways in everyday life. But does this informa
tion make life easier, or simply bombard us with stimuli? In some 
forms of human-computer interaction the ability to process data 
and make rapid decisions may depend critically on the user’s level 
of cognitive workload. When this criteria is important for perfor
mance of the interface it can be useful to apply previously vali
dated cognitive measures to these scenarios. This allows 
researchers to assess users’ cognitive states using robust measures, 
and can enable user interface designers to evaluate and improve 
the usability of their designs. In this paper we combine 
a traditional dual-task measure with analysis of the user mouse 
movements to provide an enhanced interpretation of cognitive 
workload in a simple targeting task. This measurement is demon
strated without the need for additional apparatus, lending it 
ecological validity for human-computer interaction applications.

1.1. Background

User interfaces (UIs) appear in many forms, from computer 
displays to in-vehicle assistants in cars and heads-up displays 
in aircraft. UIs are designed to present information that users 
need in order to complete tasks, but the amount of information 
a UI presents, and the manner in which it is presented, can affect 
users’ experience negatively (Haapalainen et al., 2010). For 

example, in-car voice-based assistants are designed to make the 
driving experience easier by providing voice control for various 
systems in the vehicle, but their use can distract drivers, leading 
to driver errors (Strayer et al., 2017). The paradox of more 
information hindering users stems from the limited attentional 
resources users have at their disposal (Bach et al., 2009). The 
effect of UIs on user’s cognitive state is therefore of particular 
interest in the discipline of human-computer interaction.

Excessive or distracting information affects users because 
of the limited cognitive capacity people have to process stimuli 
(Kahneman, 1973; Townsend & Eidels, 2011). Tasks that 
require some resource such as working memory can overload 
this capacity, leading to deterioration in performance (Causse, 
Peysakhovich et al., 2016). The cognitive workload of a task or 
stimulus refers to the effect it has on the user’s cognitive 
capacity. As workload increases, the resources available to 
the user diminish, until they are overloaded, and performance 
suffers. However, workload and performance are not corre
lated one-to-one. Some sources of workload may have more 
of an effect than others. For example, according to Multiple 
Resource Theory (Wickens, 1980), two tasks in a multitasking 
setting that appeal to the user’s visual sense are theorized to 
cause greater interference than tasks that do not share 
a sensory modality, as processing stimuli of different modality 
may utilize different cognitive resources. However, multitask
ing is likely to impose greater cognitive workload than a single 

CONTACT Alexander Thorpe alexander.thorpe@uon.edu.au University of Newcastle, University Dr, Callaghan NSW 2308, Australia

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION
https://doi.org/10.1080/10447318.2021.2002054

© 2021 Taylor & Francis Group, LLC

http://orcid.org/0000-0001-9267-1175
https://crossmark.crossref.org/dialog/?doi=10.1080/10447318.2021.2002054&domain=pdf&date_stamp=2021-12-10


task, as the planning and execution of responses draws on 
a single pool of resources (Wickens, 2002).

The effects of increased sensory information can also be 
understood using Lavie’s (1995) two-stage model of proces
sing, which distinguishes between perceptual demands and 
cognitive demands. Tasks with high perceptual load affect 
users by presenting high amounts of stimuli to be processed 
(Lavie, 1995). Excessive perceptual load can lead to inatten
tional blindness, a state in which users fail to perceive new, 
potentially important stimuli (Macdonald & Lavie, 2008; 
Simons & Chabris, 1999). By contrast, environments that 
require users to multitask, or share cognitive resources 
between concurrent tasks, impose high cognitive control load 
(Lavie et al., 2004), which can lead to decreased performance 
in each of the tasks, and even to a loss of situational awareness 
(Endsley, 1993). The distinction between these forms of load 
is subtle, but meaningful. Perceptual load is increased merely 
by the presence of stimuli, whereas cognitive control load is 
increased by demands on the user to process and interact with 
stimuli. Increased cognitive workload is also associated with 
higher levels of stress (Or & Duffy, 2007). Completing 
a cognitive task at a high level of stress carries with it 
a higher physiological cost than completing the same task 
while calm (Mandrick et al., 2016), leading to an overall 
negative physiological impact including fatigue (Patel et al., 
2016). Stress and cognitive workload therefore have a complex 
effect on performance in the context of computer-based tasks. 
However, the current study focuses on the specific effect of 
cognitive workload on computer-based task performance.

Researchers have assessed the effect of additional percep
tual load on users’ cognitive state when that additional infor
mation is not relevant to the task. This kind of experimental 
design, known as a distractor task, assesses the negative effect 
of the irrelevant stimuli on task performance (Forster & Lavie, 
2007). In contrast, a task where the additional information is 
relevant is known as a redundant target task; additional infor
mation is expected to improve performance in the form of 
faster responses, facilitation that is termed the redundant 
target effect (Townsend & Nozawa, 1995).

Another method of assessing the cognitive workload of 
a computer-based system is by presenting a secondary mea
sure. This can take the form of a physiological measure, such 
as heart rate tracking (Rajan et al., 2016; Rottger et al., 2009; 
Ryu & Myung, 2005), or eye tracking (Causse, Imbert et al., 
2016; Kim & Wohn, 2011; Kujala & Saariluoma, 2011). These 
measures are useful as they serve as indicators of physiological 
arousal, which in turn reflects the user’s stress and attention 
capacity (Bach et al., 2009). A drawback of these measures is 
the need for measurement devices, which can be expensive 
and obtrusive. An alternative secondary measure is a dual task 
experimental paradigm. Such designs present a secondary task 
whose demands do not change, alongside a primary task with 
differing levels of cognitive workload. Any changes in perfor
mance on the secondary task are inferred to be the result of 
changing demands in the primary task. This design has been 
used to assess the cognitive impact of interacting with syn
thetic talking head systems (Stevens et al., 2013) and the 
effects of multitasking on driving ability (Salvucci & 
Beltowska, 2008). The latter application has also given rise 

to the development of a standardized dual task measure, the 
detection response task.

1.2. Detection response task

The detection response task (DRT) is a commonly used dual 
task measure. It is a standardized task designed to assess 
cognitive workload in real-world settings (International 
Organization for Standardization, 2016). It requires partici
pants to respond whenever they detect the presence of a pre- 
designated stimulus such as a tone, or a light. It is presented 
alongside a continuous primary task, and indexes residual 
capacity, or those resources not used by the primary task. 
Because the DRT’s demands do not change, it can be inferred 
that any changes in DRT performance, either in the form of 
response speed or accuracy, are due to changes in the work
load demands of the primary task. Slow, inaccurate responses 
on the DRT indicate low residual capacity, and therefore 
a state of high workload, whereas fast, accurate DRT 
responses indicate high residual capacity, and low workload.

The DRT has been used to estimate the workload demand 
of mobile phone use while driving (Strayer et al., 2015; 
Tillman et al., 2017), the effect of voice-based assistants in 
driving (Strayer et al., 2017), and the relative workload impo
sition of 2D and 3D information presented in the heads-up 
displays of helicopter pilots (Innes et al., 2018). The DRT has 
also been applied in the domain of human-computer interac
tion, to assess the cognitive impact of an ambient display 
(Shelton et al., 2020). Because the DRT is a standard measure, 
it can be delivered in a computer-based task, provided the task 
follows the methodology laid out in the ISO standard (Thorpe 
et al., 2019). The overall workload demand of the DRT is low, 
so it has a small, but non-zero impact on primary task per
formance (Thorpe et al., 2020).

The DRT is well suited to measure cognitive workload in 
real-world tasks, such as driving. Since it is a secondary mea
sure, accompanying performance in some other, main task, 
workload can be monitored via the DRT while the human 
operator can be engaged with the task of interest. This is an 
advantage, but also a challenge. Real life tasks offer little 
experimental control, and workload can vary inadvertently 
without the control of the experimenter. By contrast, tradi
tional experimental designs offer improved experimental con
trol, where the researcher can control and manipulate the 
workload. The two differ on yet another important aspect: 
while real-life tasks are often continuous (e.g., drivers must 
constantly monitor the road) most traditional psychological 
experiments, such as redundant target tasks, are not contin
uous. Instead, they have trial-by-trial designs, where trials 
begin with the presentation of stimuli, and end with the 
participant’s response to that stimuli. The resulting data is 
discrete, commonly in the form of response times (RT). These 
tasks are well-controlled, but do not reflect the continuous 
nature of real-world tasks.

Trial-by-trial designs are also not always compatible with 
the DRT, as the latter should be presented alongside tasks 
with constant workload. Consider a hypothetical experimen
tal trial, depicted in Figure 1, in which participants need to 
identify whether a string of letters is an English word or 
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a non-word. The gauges below each screen in the figure 
represent the fluctuation in participants’ workload over the 
stages of the trial. These gauges do not represent any empiri
cal data, and they are intended to be taken only as illustra
tive of the way workload changes over time. At various 
points in the trial, participants are simply presented 
a blank screen, which imparts no workload in itself. 
Screens 2 and 4 impart some workload as participants 
must perceive the stimuli presented, though screen 4 imparts 
the highest workload as participants must also process the 
string “fuor” and decide whether it is a word or a non-word. 
As workload does not remain consistent throughout this 
trial, a DRT probe presented at different times throughout 
the trial would detect different levels of workload. The DRT 
therefore cannot accurately estimate residual capacity on this 
task.

Nevertheless, the control gained in trial-by-trial experi
ments has allowed for the development of sophisticated mod
eling techniques that can assess the effects of workload on 
participants’ cognitive state. These techniques generally ana
lyze RT distributions to draw their inferences. To harness the 
power of these analytic techniques, it is therefore valuable to 
have a primary task that can produce discrete data, but is 
otherwise more ecologically valid.

1.3. Arm reaching trajectories

In arm reaching experiments, participants do not simply 
select a response with a button press, but rather reach to 
a target or response point with their hand. These experiments 
therefore produce richer data on each trial than traditional 
trial-by-trial experiments – the participant’s response is not 
a single data point, but a time series of the position of their 
hand in space. This allows performance to be assessed 
throughout a trial, and changes in performance within 
a single trial to be detected. Participants monitor their own 
performance and can update the execution of arm move
ments, either consciously or unconsciously, during 
a movement (Friedman et al., 2013). Such experiments there
fore represent a means of presenting choice-based experi
ments in a way more similar to real-world behaviors than 

traditional trial-by-trial experiments, making them more 
amenable to use with the DRT.

When applied to the study of cognitive processes, arm 
reaching experiments can test predictions in ways that may 
not be possible using RT data. Finkbeiner and Heathcote 
(2016) presented response boards on the left and right of 
participants, with each board corresponding to a response to 
one of two color-coded targets. These targets could be pre
sented on the same side of a display as its corresponding 
response board (congruent), the opposite side (incongruent), 
or in the center (neutral). Data was collected based on how 
participants reached for the response boards, and the latency 
of the first movement toward a response board, also labeled 
movement onsets. By looking at the directions of movements 
made at different movement onset times, it was possible to 
support one explanation of the choice conflict effect being 
studied, and reject another explanation, in a way that RT data 
could not.

Arm reaching studies have been used to study the effect of 
distractors on perceptual processing (van Zoest & Kerzel, 
2015), similarly to previous studies that collected RT data 
(Lavie, 1995; Lavie et al., 2009; Macdonald & Lavie, 2008). 
The presence of distractors was found to affect the trajectory 
of arm movements by literally attracting the participants’ 
hands toward the distractor’s position (see also Tillman 
et al. (2017)). Arm reaching data can also be used in similar 
applications to RT data, such as in cognitive modeling 
(Friedman et al., 2013). Arm reaching data have also been 
used to study the effect of task difficulty (MacKenzie, 2018), 
effort (Balasubramanian et al., 2015), and distraction and 
cognitive workload (Dounskaia & Goble, 2011) on trajec
tories. Arm reaching data can also be used to investigate 
how responses are planned and executed. The execution of 
a response need not begin only after the planning stage has 
finished, but rather execution can begin based on interim 
perception and planning, while further perception and plan
ning continues (Cisek & Kalaska, 2010). Similarly, because 
trials do not finish until the end of the execution of 
a response, participants can update their responses and 
change their arm movement throughout a response 
(Friedman et al., 2013; Resulaj et al., 2009).

Figure 1. Screens from an example trial of a generic experiment, with corresponding gauges illustrating how workload levels change over time. Different stages of 
the trial have different workload demands.
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The same designs and analysis techniques used in arm 
reaching studies can be applied to scenarios more relevant 
to UI design, such as mouse movements on a computer screen 
(Freeman, 2018; Senanayake et al., 2015; Stillman et al., 2018) 
or finger movements on a touch screen (MacKenzie, 2018). 
Fitts’ law is used to calculate the index of difficulty of a hand 
movement in terms of bits of information, based on the size of 
the target and distance the hand is required to travel (Fitts, 
1954). The throughput of a process, in terms of bits 
per second, can also be calculated to assess the efficiency of 
the process. Although this law was originally devised based on 
direct body movements such as finger pointing, it can be 
generalized to scenarios where an object is moved using an 
input device (Jiang et al., 2015). Applying arm-reaching mea
sures to a computer-based environment would enhance their 
applicability in the space of UI assessment, given the ubiquity 
of computer mice and touch screens in computer-based 
systems.

It is necessary to consider which features of movement 
trajectories best lend themselves to analysis in the context of 
UIs or other computer-based environments. As described 
above, Finkbeiner and Heathcote (2016) analyzed their data 
pooled by movement onsets to enrich their findings beyond 
what RTs could achieve. The curvature of movement trajec
tories could also be analyzed to measure the impact of dis
tractors on performance (Bundt et al., 2018; Erb et al., 2016; 
Tillman et al., 2017). The discrepancy between “ideal” move
ment directly toward a target and the participant’s actual 
movement trajectory could indicate the extent to which the 
distractor has interfered with movement execution. 
Movement time can also be used to assess movement execu
tion, with faster movement times representing less distraction 
during movement execution; this measure has also been 
found to correlate with trajectory curvature as a measure of 
distraction (Bundt et al., 2018; Erb et al., 2016). Another 
possible avenue is the analysis of submovements. Motor con
trol theories propose that rather than continuously controlling 
arm trajectories, they are instead controlled at discrete points 
in time (Miall et al., 1993), such that most movements are 
made up of the superposition of a number of component 
movements (submovements).

Arm movements toward a target are reassessed and 
optimized throughout the execution of the movement 
(Meyer et al., 1988), and the onset times of submovements 
in a targeting task have been shown to be temporally linked 
to electrophysiological markers in the action-monitoring 
system (Pereira et al., 2017). It follows that a participant 
under higher workload has less available capacity to ded
icate to this optimization process, resulting in a less optimal 
movement characterized by slower responses with more 
submovements (Grimes & Valacich, 2015) due to an 
increase in execution noise (van Beers et al., 2004). 
Submovement data can also address the stages of 
a decision making process outlined above. Friedman et al. 
(2013) found evidence that when participants began execut
ing a movement before completing the planning stage, the 
direction of that movement would be somewhere between 
the two options, and the extent to which it targeted one 
option reflected the currently accumulated evidence in 

favor of that option. Further submovements reflected the 
updating of evidence, suggesting the two stages of planning 
and executing a movement could occur concurrently, if not 
in parallel.

1.4. Current study and aims

The current body of literature suggests we can use movement 
trajectories to assess the effect of cognitive workload in 
a computer-based environment. Trajectory data may shed light 
on which components of a process affect behavior. For example, 
we would expect trials under higher workload to be slower than 
those under lower workload, but this difference could be driven by 
changes in the planning of movements, or in their execution. It is 
necessary to identify the stage or stages in which workload impacts 
performance, both to build an accurate theoretical account of 
workload demands on mouse movements, and to better inform 
practices that could optimize computer-based tasks and limit their 
cognitive demands. By utilizing the DRT alongside a mouse-based 
targeting task, a comprehensive picture of users’ cognitive states 
across different levels of workload can be built, without the need 
for additional apparatus. Our study therefore aimed to assess 
workload in a computer-based task using movement trajectories 
alongside the DRT. We aimed to validate potential analyses of 
trajectories that could be applied beyond lab-based experiments. 
Specifically, we aimed to use movement onset time to assess the 
effect of workload on movement planning, and submovements to 
assess the effect of workload on movement execution. 
Submovement measurement was chosen over movement time as 
the latter is strongly influenced by factors including vigor and 
distance to target which are not necessarily related to workload 
(Shadmehr et al., 2019). Instead, we used the number of submove
ments, which may reflect the planning horizon – when partici
pants are able to plan ahead, they will make less submovements, 
which may reflect lower workload and are less influenced by 
distance to target and vigor. For further analysis using alternative 
measures, see Appendix A.

It was expected that high primary task workload, that is the 
cognitive workload imposed by the targeting task, would be 
associated with slower and less accurate DRT responses, as 
well as slower responses on the targeting task. Three potential 
outcomes relating to mouse movement data were identified.

(1) Primary task workload affects movement execution 
only.

(2) Primary task workload affects movement planning 
only.

(3) Primary task workload affects both movement plan
ning and execution.

If only movement execution is affected by primary task work
load, we expected to see less optimal mouse trajectories with more 
submovements, while onset time would not be affected by primary 
task workload. This prediction was made due to previous studies 
of reaching trajectories finding that greater curvature was asso
ciated with distraction or incomplete movement planning. More 
submovements would therefore indicate a negatively impacted 
execution phase. Support for this prediction would imply that 
increased workload draws on attentional resources otherwise 
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required for executing movements. However, if the planning stage 
of responses must be completed before execution can begin, it was 
expected that movement onset would be later under high load, 
with no change in the number of submovements. This prediction 
was based on the assumptions of a response model in which 
planning must be completed before execution – unlike our first 
prediction, this prediction implies all processing that requires 
cognitive resources will be complete before movement execution 
begins, leading to no effect of workload on movement execution. If 
both movement planning and execution were affected by primary 
task workload, we expected to see both onset time and submove
ments increase with primary task workload. Increased cognitive 
workload has been associated with slower information processing 
in previous cognitive research, and with greater trajectory curva
ture in arm-reaching research. Support for this prediction would 
therefore indicate that both stages of the response process require 
attentional resources that may be impacted by increased workload. 
Based on previous studies presented above, we hypothesized that 
the third outcome, in which both movement planning and execu
tion are affected by workload, was most likely.

2. Materials and methods

2.1. Participants

Sixty-five participants from the University of Newcastle (F = 47, 
M = 18) completed the experiment in the Newcastle Cognition 
Lab. Mean age of participants was 24.55 years (SD = 8.20 years). 
Fifty-seven participants were right-handed. Participants were 
recruited through SONA, the online recruitment system, and 
remunerated with course credit. The study was approved by the 
University of Newcastle Human Research Ethics Committee, and 
participants signed an informed consent form before starting the 
experiment.

2.2. Design

The current study used a dual-task paradigm, in which 
a mouse-based task was presented alongside a computer- 
based DRT. The primary task was a targeting task, whereby 
stationary targets were presented and participants were 
required to hover the mouse over the targets as they appeared 
on screen. The primary task had a 2 (Workload: high, low) x 2 
(Stopping rule: minimum time, exhaustive) mixed factors 
design. The first, primary task workload, was a within- 
subjects factor. primary task workload determined how 
many targets were presented on each trial. In the low-load 
condition, one stationary target was presented, while in the 
high-load condition two stationary targets were presented 
concurrently. Participants were required to hover the mouse 
over these targets, though they were not required to click 
targets to register a response.

A between-subjects factor of stopping rule was also pre
sented, which related to how participants were required to 
respond to each trial. Low-load trials were identical for mini
mum-time and exhaustive conditions – with only one target 
present, participants were only required to hover the mouse 
over the target to complete the trial. However, high-load trials 
differed by stopping rule. Minimum-time trials were com
pleted by hovering the mouse over only one target, which 
would complete the trial, while exhaustive trials were com
pleted by hovering the mouse over first one target then the 
other. The trial would not be complete until participants 
hovered the mouse over both targets. Figure 2 shows the 
differences in required responses based on the workload and 
stopping rule conditions. It should be noted that, in the high- 
load minimum-time cell in the top-right of Figure 2, the trial 
could be completed by hovering the mouse over either target, 
and in the high-load exhaustive cell in the bottom-right, 

Figure 2. Expected responses to trials in each condition of primary task workload and stopping rule. Arrows show the expected movement of the mouse-controlled 
crosshair toward the target(s). In the minimum-time condition, high-load trials can be completed by hovering the mouse over just one target, while in the exhaustive 
condition, both targets must be targeted, as indicated by the numbered arrows.
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either target could be chosen as the first target to hover the 
mouse over, though both must be targeted for the trial to 
complete. Changes to stopping rule across tasks were designed 
to manipulate the redundancy of the targets. In the mini
mum-time condition, processing either target was sufficient 
to complete the trial – participants had the opportunity to 
process the other target, but it was not necessary. In contrast, 
both targets needed to be processed in the exhaustive condi
tion. The exhaustive condition forced participants to dedicate 
cognitive resources to the second target where the minimum- 
time condition did not. The impact of the second target on 
cognitive resources can therefore be examined by comparing 
performance across the two stopping rules, whereas this 
impact may not be accounted for by either stopping rule 
alone. Thirty-three participants completed minimum-time 
versions of the tasks, while thirty-two completed exhaustive 
versions.

Alongside this task, a secondary computer-based DRT was 
presented throughout the experiment. Participants were pre
sented a visual signal and were required to respond as quickly 
as possible by pressing the space bar on a keyboard. Primary 
task dependent variables were response time, or the time 
taken to complete the trial, movement onset time, defined as 
the time from the beginning of a trial to the first mouse 
movement toward the target, and scaled submovements, 
defined as the number of submovements in each mouse 
trajectory scaled by the length of the trial. Further details of 
how these dependent variables were calculated is presented 
below in the Data Analysis section. Three dependent variables 
were collected from the DRT – mean RT, hit rate and false 
alarm rate.

2.3. Stimuli

The primary task was presented in the center of the screen, in 
a square area subtending 13 × 13 degrees of viewing angle. 
Low-load trials presented one target dot, while high-load trials 
presented two targets dots. All the dots had a radius of 0.5 
degrees. In the primary targeting task, participants controlled 
a crosshair object with a radius of 0.75 degrees. Participants 
responded to targets by moving this crosshair over the stimu
lus with a mouse using their right hand. The precision of 
mouse movements required to complete a trial was optimized 
during pilot testing to ensure rapid, random movements 
would not be registered as completed trials. Upon completing 
a targeting task trial, the next trial began immediately. Trials 

did not time-out, but rather continued until participants 
completed the trial. This was done so as to require continuous 
task performance, without inter-stimulus intervals. The place
ment of targets on low-load trials was random, as was one 
target in high-load trials, with each co-ordinate drawn from 
independent uniform distributions. On high-load trials, 
the second target was placed such that it would be no more 
than 1.5 degrees of viewing angle closer or further from the 
mouse cursor to the first target. This was done so targets 
would be at least somewhat equivalent in their distance 
from the cursor at the beginning of each trial, without restrict
ing potential target positions to the extent that valid positions 
could not be found.

Wall and floor objects surrounded the central area, and 
lines on these objects moved to simulate forward motion 
through a trench. This was done to present a continuous 
visual environment, similar to what would be seen in 
a video game. DRT stimuli were presented by illuminating 
the walls of the trench as shown in the right panel of Figure 3. 
DRT stimuli were presented for one second, or until partici
pants responded to the stimuli. Responses slower than 2.5 sec
onds were classified as late misses, and multiple responses in 
a single trial were classified as false alarms. DRT trials were 
presented with inter-stimulus intervals of 2–4 seconds, per the 
ISO standard (International Organization for Standardization, 
2016). All stimuli were presented in green, of RGB values 8, 
219, 78, on a black background.

2.4. Apparatus

Figure 3 depicts an example screen from the experiment. The 
dimensions of stimuli are hereafter reported in degrees of 
viewing angle. Given the monitor size and resolution, with 
participants seating at a roughly fixed distance of 80 cm, one 
degree of viewing angle was equal to approximately 51 pixels 
or approximately 1.4 cm of screen space. Degrees of viewing 
angle were used to calculate stimuli size to ensure perceptual 
control across participants. The experiment was presented 
using PsychoPy 1.85.3 on a Dell S2240Lc LCD monitor, 
with screen dimensions of 53x30cm and a resolution of 
1920 × 1080 pixels.

2.5. Procedure

Demographic information was collected from participants, 
and they were seated in a quiet room in front of the test 

Figure 3. Example screens from high-load trials with DRT stimulus absent (left) and present (right).
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monitor. Their distance from the monitor was measured to 
ensure 80 cm distance. An interactive instruction phase was 
presented to explain the various tasks. A practice block was 
then presented. Following this, fifteen blocks of 60 second 
duration were presented. Low- and high-load trials were ran
domly presented within each block. There was not a set num
ber of trials within a block, instead participants completed 
trials until the block ended. Each block was separated by 
15 second breaks to manage fatigue.

2.6. Data analysis

Mouse movements on targeting trials were analyzed by first 
collecting a time series of mouse motion in relation to the target
(s), at a time resolution of 60 Hz. Two data sets were derived from 
this motion data. Movement onset was calculated by locating the 
first movement of the mouse toward the target, defined as any 
movement within 90° of the target. The number of submovements 
on each trial was approximated by identifying and counting peaks 
(Hogan & Sternad, 2009) in mouse speed in each trajectory, from 
the first movement toward the target to the completion of the trial. 
This value was divided by the time taken to complete the trial. 
This division was done for normalization, to control for the 
random distance the participant needed to move the mouse on 
each trial, since a longer distance to travel may lead to longer 
duration trials, which would likely result in more submovements 
due to the strong correlation between number of submovements 
and movement duration (Park et al., 2017). This adjusted depen
dent variable is therefore defined as scaled submovements.

Figure 4 shows the relationship between some example 
mouse movements and the resulting data. In panel 1, the move
ment of the crosshair to the chosen target, represented by the 
white line, has relatively few submovements, while the move
ment in panel 2 has more submovements. The results in panel 3 
illustrate the difference between the first two panels. Assuming 
performance in the single-target condition is similar for both 
data sets, the number of submovements in the data from panel 2 
increases with primary task workload, suggesting a greater 
increase in workload. The data from panel 1 shows only 
a small increase in submovements, suggesting little effect of 
primary task workload. For further analyses utilizing alternative 
measures of performance, see Appendix A.

As primary-task events and DRT signals were presented 
independently, there was no guarantee that a DRT trial would 

occur during only one condition of primary task workload. 
Given the DRT must be presented alongside a primary task of 
consistent workload, it was necessary to remove DRT trials 
that occurred during both low- and high-load trials. To max
imize observation numbers, DRT trials were considered valid 
if at least 90% of the trial occurred during only one primary 
task workload condition. Consider the example of a DRT trial 
with a response time of 500 ms. If the DRT stimulus was 
presented during a single-target trial on the primary targeting 
task, and the participant responded to the DRT during 
a subsequent double-target trial, the DRT trial may be invalid 
as it occurred during two levels of primary task workload. 
However, if at least 450 ms of the DRT trial occurred during 
one of those two targeting task trials, it would be considered 
valid as 90% of the trial’s time took place alongside only one 
level of primary task workload.

Data from five participants were excluded due to low 
response rates (missing more than 50% of trials on either 
task). Very fast trials ( < 150 ms) were removed from both 
primary task and DRT data as they would not represent 
conscious responses to the current trial, but rather an acci
dental response or carry-over response from a previous trial. 
Group-level comparisons were carried out using paired- 
samples t-tests and mixed-design ANOVA. The latter tests 
were chosen to detect potential interactions between the two 
factors, and because one factor, primary task workload, was 
within-subjects while the other, stopping rule, was between- 
subjects. Equivalent Bayesian tests in cases of non-significant 
results, using JASP (JASP Team, 2018). The latter analyses 
were carried out because frequentist tests cannot provide 
evidence in favor of null results, whereas Bayesian tests can 
(Lee & Wagenmakers, 2014). Where Bayesian analysis is 
reported, two kinds of Bayes Factors are used – BF10, which 
provides evidence for an effect against a null model, similarly 
to a t-test, and BFInclusion, which represents evidence in favor 
of including a given factor in an explanatory model of the 
data. Despite this subtle difference, both kinds of Bayes 
Factors are interpreted the same way. We used Jeffreys 
(1961) classification scheme to interpret Bayes Factors. In 
this convention, a BF of 1 to 3 represents anecdotal evidence, 
3 to 10 represents moderate evidence, 10 to 30 represents 
strong evidence, 30 to 100 represents very strong evidence, 
and greater than 100 represents extreme evidence. Each of 
these values applies to the alternative hypothesis. Values of 

Figure 4. Example mouse movements with few submovements (panel 1) and many submovements (panel 2), with the resulting trends in data (panel 3).
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less than one provide evidence for the null hypothesis in the 
same manner, so a BF of 0.1, or 1/10, represents the same 
strength of evidence for the null that a BF of 10 would for the 
alternative.

3. Results

Before investigating mouse trajectory data, it is necessary to 
first apply a more traditional analysis of response time data to 
provide a baseline for the new analyses. When two targets 
were presented, participants in the exhaustive group were 
required to hover the mouse over first one target, then the 
other, as described in the Method section. The signal detec
tion and movement decision processes are assumed to happen 
during the first of these two targeting legs, as they must be at 
least partly completed before the first leg could be completed. 
If the presence of a second target increased the workload 
required to perceive the targets, plan a movement and execute 
it, the effect of this increased workload is likely to be seen in 
response times on the first leg of the trial, but not the second. 
Indeed, because the legs must be completed in succession, 
some of the planning and execution for the second leg may 
have taken place during the first leg of the trial, making 
the second leg faster. The first leg of the high-load trials was 
otherwise identical to the low-load trials, with participants 
hover the mouse over a single target. Any difference from 
the low-load condition to the first leg of the high-load condi
tion would therefore be due to the effect of processing 
the second target. For this reason, mouse movements from 
the first leg only are used for the comparisons below.

3.1. RT analysis

The left panel of Figure 5 shows mean targeting task RTs 
across levels of primary task workload and stopping rule. 
A main effect of primary task workload was found, with 
mean targeting RT faster on low-load trials (M = 568 ms, 
SD = 118 ms) than on high-load trials (M = 576 ms, 
SD = 118 ms), F(1, 58) = 18.69, p < .001. No main effect of 
stopping rule was found, with Bayesian analysis providing 
anecdotal evidence against stopping rule’s inclusion in an 
explanatory model, BFInclusion = 0.96. A significant interaction 
was observed, F(1, 58) = 42.14, p < .001, due to a greater 
effect of primary task workload for the exhaustive condition. 

Indeed, an analysis of simple effects shows that RT increased 
significantly in the exhaustive condition, F(1, 28) = 50.91, 
p < .001, but not in the minimum-time condition, which 
showed anecdotal evidence in favor of no difference, BF10 
= 0.64. It must also be noted that the observed main effect 
was very small, with a mean difference of just 8 ms. 
Considering the display refreshed at a rate of 60 Hz, this 
difference represents less than one frame’s worth of time. 
This finding should therefore be interpreted with some cau
tion. It should be noted that each of the panels in Figure 5 
represents an independent task. Although they share a similar 
time-scale, they are not directly comparable.

The right panel of Figure 5 shows mean DRT RT across 
primary task workload and stopping rule conditions. No main 
effect of primary task workload on mean RT was found, with 
anecdotal evidence against including primary task workload 
as an explanatory factor, BFInclusion = 0.53. No main effect of 
stopping rule was found, again with anecdotal evidence 
against including the factor, BFInclusion = 0.70. A significant 
interaction effect was found, F(1, 58) = 5.89, p = .018. An 
analysis of simple effects shows this interaction was driven by 
an increase in mean RT with increasing primary task work
load for the exhaustive condition, F(1, 28) = 6.48, p = .017, but 
not for the minimum-time condition, with moderate evidence 
in favor of no difference in this condition, BF10 = 0.23. This 
pattern of results indicates that increased primary task work
load had a deleterious effect on participants’ cognitive capa
city in the exhaustive condition only.

No differences in mean DRT hit rate was found, with 
moderate evidence against including primary task workload 
as a factor, BFInclusion = 0.27, and anecdotal evidence against 
including stopping rule, BFInclusion = 0.63. No differences in 
DRT false alarm rate was found, again with moderate evi
dence against including primary task workload, BFInclusion 
= 0.19, and anecdotal evidence against including stopping 
rule, BFInclusion = 0.46.

3.2. Mouse trajectories

A main effect of primary task workload was found on mouse 
trajectories – when participants were presented with two 
targets, onset times were slower (M = 231 ms, SD = 33 ms) 
than when only one target was presented (M = 223 ms, 
SD = 34 ms), F(1, 58) = 83.62, p < .001. No significant 

Figure 5. Mean RT on the targeting task (left) and DRT (right) across levels of primary task workload and stopping rule (MT = Minimum Time, EX = Exhaustive). Error 
bars represent one standard error. Data points are offset to aid readability.
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main effect of stopping rule was found, with Bayesian analysis 
indicating anecdotal evidence against including stopping rule 
as a factor in an explanatory model, BFInclusion = 0.46. As the 
left panel of Figure 6 shows, a significant interaction effect 
was found between primary task workload and stopping rule, 
F(1, 58) = 284.26, p < .001. An analysis of simple effects 
shows that, in the minimum-time condition, onset times were 
faster under high primary task workload than under low 
workload, F(1, 30) = 66.59, p < .001. In contrast, in the 
exhaustive condition onset times were slower under high 
primary task workload than under low workload, F(1, 
28) = 207.62, p < .001. It is worth noting that the low-load 
trials were identical for both stopping rules. Any observed 
difference would be due to the context effect of the high-load 
conditions, which had different demands across the two stop
ping rules. An analysis of simple effects shows the difference 
between onsets in low-load trials approached significance, 
with Bayesian analysis presenting anecdotal evidence for this 
difference, BF10 = 1.14. Given the relatively low Bayes Factor 
and the lack of a similar effect in other measures, this repre
sents little evidence for a context effect.

When scaled by trial duration, participants made more 
submovements on trials with two targets (M = 3.52 peaks/ 
sec, SD = 0.23 peaks/sec) than on trials with only one target 
(M = 3.38 peaks/sec), SD = 0.17 peaks/sec), F(1, 58) = 127.72, 
p < .001. A significant main effect of stopping rule was also 
found, F(1, 58) = 11.67, p = .001, and a highly significant 
interaction between the two factors, F(1, 58) = 62.87, 

p < .001. As the right panel of Figure 6 shows, the latter 
two effects were driven by the exhaustive high-load condition, 
which was greater than the other three conditions. Taken 
together, these analyses indicate that performance decreased 
under high load in the exhaustive condition, as predicted. 
However, this decrease was not observed in the minimum- 
time condition, which did not reflect our hypothesis, or any of 
the predicted outcomes.

3.3. Target choice

On high-load trials participants were presented concurrently 
with two targets on the screen. If the relative distance from the 
starting point to each of the targets had no bearing on which 
target was chosen, the likelihood they chose the nearest of the 
two was 50%, while a deviation might suggest they invested some 
processing resources in identifying the closer target, to minimize 
mouse travel distance and time. One-sample t-tests were used to 
assess these deviations. As Figure 7 shows, participants chose the 
closer target on a high-load trial significantly more often than 
chance, denoted by the dashed line in Figure 7, on both the 
minimum-time (M = 60%, SD = 3%), t(30) = 17.16, p < .001, 
and the exhaustive conditions (M = 55%, SD = 3%), t 
(28) = 11.06, p < .001. The two groups were compared using 
an independent-samples t-test. The closer target was chosen 
significantly more in the minimum-time condition than in the 
exhaustive condition, t(58) = 5.97, p < .001. These findings 

Figure 7. Proportion of trials in which the closer target was chosen across stopping rule conditions. Dashed line represents chance performance.

Figure 6. Mean movement onset times (left) and mean scaled submovements (right) across levels of task load and stopping rule. Error bars represent one standard error.
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indicate participants were able to identify and choose the closer 
target, suggesting some planning of movements.

We can also assess how participants’ target choices were 
affected by onset time. If participants who waited longer to 
begin a movement were more accurate than those who began 
movements earlier, it would suggest participants were plan
ning their movements based on which target was closer. 
However, a negative correlation was found between onset 
time and target choice accuracy, when accuracy was defined 
as the proportion of trials on which the closer target was 
chosen, r(58) = −.26, p = .042. Given that the correlation 
was weak, with a p-value close to the .05 significance level, 
and that the relationship was negative when we would expect 
a positive correlation between onset time and accuracy, this 
finding does not support the prediction that participants 
planned their movements based on target proximity. Taken 
together, these findings offer mixed evidence for movement 
planning based on choosing the closer target.

3.4. Variable trial numbers

Due to the relatively continuous design of the task, there was no 
set number of trials per block; instead, participants would com
plete as many trials as they could in the allotted time. This leads 
to the potential confounding factor of trial numbers on perfor
mance and workload. If completing more trials increased work
load or led to fatigue, then participants who completed more 
trials could have experienced a more demanding task than those 
who completed relatively few trials.

Participants in the minimum-time group completed sig
nificantly more trials (M = 1262, SD = 155) than those in the 
exhaustive group (M = 922.90, SD = 79), t(58) = 10.59, 
p < .001. This difference was also significant for low primary 
task workload, t(58) = 9.61, p < .001, and high workload, t 
(58) = 11.21, p < .001. Despite completing more trials, no 
main effects of stopping rule were found on any measure of 
targeting task performance or workload, as discussed above. 
This suggests the increased trial numbers did not affect per
formance on either the targeting task or DRT. The discre
pancy in trial numbers between the groups may be due to the 
differing nature of the two stopping rules – in the minimum- 
time group, participants could begin moving toward a target 
as soon as they perceived one, whereas those in the exhaustive 
group were sometimes required to perceive two targets, lead
ing to longer onset times on these trials. However, with the 
lack of evidence of a relationship between trial numbers and 
either task performance or workload, further exploration of 
this relationship is beyond the scope of the current study.

4. Discussion

As predicted, participants exhibited slower RTs on both the 
primary task and DRT as primary task workload increased in 
the exhaustive condition, though DRT accuracy was not 
affected by workload. Furthermore, mouse movement onsets 
were later and exhibited more submovements under high 
workload. However, this pattern was not observed for the 
minimum-time condition. This suggests adding a second 

target did not increase the workload demand of the task 
when that target was redundant, whereby participants could 
choose to ignore it. By contrast, adding a second target which 
needed to be targeted along with the first target did increase 
workload.

Our analysis of mouse trajectories agreed with the more tradi
tional RT analysis in its findings, but added nuance to the findings. 
We found that, when primary task workload was associated with 
slower RTs, both the planning and execution stages of mouse 
movements were affected. This finding was predicted by our 
hypothesis that the third possible outcome presented in the 
Introduction was most likely. If only the planning stage was 
affected, as in the second possible outcome, we would expect 
only onset times to be affected, as there would be no difference 
in the way movement was optimized across primary task workload 
levels. In contrast, if only execution was affected as in the first 
possible outcome, we would expect to see movements begin just as 
quickly or even quicker when more targets were present, but 
trajectories would contain more submovements. Additionally, 
our finding of more submovements under high workload indicates 
participants were beginning their movements before the planning 
stage of the movement had finished. This suggests the two stages 
could be completed concurrently, with further movement plan
ning being undertaken even as mouse movements were being 
executed. We note that these differences in submovements were 
observed even though the motor task was essentially the same 
between workload levels for the part of the movement we analyzed 
(moving from one target to another).

Stopping rule had little overall effect on performance. The 
only main effect of stopping rule was driven by the high-load 
condition, which was where the two stopping rules differed in 
their demands. In the minimum-time condition, simply per
ceiving a single target was sufficient to complete the trial. 
Indeed, the presence of multiple targets led to faster onsets, 
suggesting a redundant target effect whereby added informa
tion leads to faster performance. In the exhaustive condition, 
each target needed to be hovered over before the trial was 
complete. It is therefore unsurprising that participants in this 
condition took longer in the planning stage, as there was 
a strategic benefit to targeting the closer target first, as well 
as in the execution phase, because the target not chosen in the 
first leg of the trial was relevant to the second leg. The latter 
was reflected in the increased submovements with increased 
primary task workload in the exhaustive condition, but not in 
the minimum-time condition. The former was addressed by 
assessing target choice data. Our finding that participants 
chose the optimal target at greater than chance supports 
previous findings that under time pressure, subjects are able 
to choose the better option (Brenner & Smeets, 2015). 
However, our findings did not support the prediction that 
the slower onsets in the exhaustive condition were driven by 
participants spending more time choosing the optimal target. 
Indeed, slower onsets were associated lower, not higher accu
racy. More generally, our findings offer mixed evidence that 
participants reliably chose a target before moving – above- 
chance accuracy suggests participants were able to identify 
and hover the mouse over the closer target, but in some 
cases participants may have simply chosen targets as they 
were processed.
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4.1. Implications

The finding of both increased movement onsets and increased 
submovements under high workload lends support to model 
of movement responses whereby planning and execution can 
happen concurrently or even in parallel, with different proces
sing channels dedicated to each stage of the response. Under 
such a model, the planning stage need not be completed 
before the execution stage begins. Under the predictions of 
Multiple Resource Theory, the two stages may partially share 
cognitive resources, as planning and executive functioning is 
theorized to utilize the same resources as response execution. 
However, the perceptual component of the planning stage, in 
which the target is located, would utilize a resource dedicated 
to visual processing, and would therefore interfere less with 
execution. The agreement between the submovement and 
DRT analyses suggests the former can be used to assess work
load in experimental paradigms that traditionally use trial-by- 
trial designs, and are hence unsuitable for deployment along
side the DRT. By altering trial-by-trial designs such as those 
used for discrete choice or signal detection experiments to 
require a physical response beyond a button press, as was 
done in the current study, new insight can be gained into 
the workload demands of these tasks.

The use of trajectory data to assess cognitive workload also has 
applications beyond the laboratory. The workload imposition of 
a computer-based system has an impact on the usability of that 
system and user performance. Measuring this workload imposi
tion using data from the system itself, rather than an external 
apparatus such as a physiological measure, would allow develo
pers and researchers to estimate cognitive workload in situ in an 
unobtrusive way. Our findings imply mouse trajectories can be 
used in this way to assist UI in development to ensure UIs do not 
impose more cognitive workload than necessary, or to assess 
existing systems to assess how users respond to different compu
ter-based environments. This could be done by preparing candi
date configurations of UIs and comparing the relative utility and 
cognitive demands of these configurations to identify optimal 
configurations for particular scenarios. Such research has pre
viously been carried out using the DRT (Innes et al., 2018), but 
submovement analysis could also be used in this application.

Aside from assessing UIs, submovement analysis could also 
be used to assess users – a user’s cognitive state could be tracked 
over several sessions to assess how effectively they are learning to 
use an interface or evaluate the effectiveness of training. Users 
could also be compared to identify individual differences for the 
purposes of selection or recruitment. There is also a potential 
application of movement trajectories in touchscreen use, given 
the increased use of smartphones and tablets in recent years. 
User behavior during web site navigation could be analyzed to 
evaluate web page designs, or to evaluate the effectiveness of web 
advertising to capture users’ attention. However, further 
research is required to investigate whether the current study’s 
findings can be applied to touchscreen-based tasks.

A measure based on performance within a system also has 
the advantage of potentially operating as an online, real-time 
measure of workload. Adaptive systems can classify a user’s 
workload state based on task performance or other measures, 
such as physiological measures, and change features of the 

system to minimize the workload imposition on the user 
(Durkee et al., 2015). Such a system requires objective, real- 
time measures of workload, which can operate while the user 
completes their primary task – neurological measures such as 
functional magnetic resonance imaging, for instance, could 
not be applied in an in-car system, simply because the appa
ratus is too intrusive. There is therefore an advantage to 
a measure that can be built in to a computer-based system 
or UI. Our findings indicate that, in a computer-based task 
where the user uses a mouse as an input device, user behavior 
could be analyzed to diagnose user workload. Whether the 
temporal resolution of these measures is high enough to be 
usable as a real-time measure is an open question, and further 
research is required to address it.

4.2. Considerations

In applying psychological experimental designs to real-world 
scenarios, some compromises are made to benefit applicability 
at the expense of experimental control. Nevertheless, the 
current study’s design was less controlled than other redun
dant target or choice tasks, even compared to other arm 
reaching experiments. Other studies present targets in con
stant positions, and may require participants to return their 
hand or mouse to a constant starting position (Finkbeiner & 
Heathcote, 2016; Friedman et al., 2013; Grimes & Valacich, 
2015). In the current study, each trial began where the pre
vious trial ended, and the position of the targets was random, 
within some limits. The distance between each target and the 
mouse cursor was also not equal – indeed, the above analysis 
would not be possible if targets were equidistant from the 
cursor. This loss of control affects our ability to draw some of 
the conclusions available to previous researchers. For exam
ple, the curvature of the trajectory can be used as a measure of 
distraction, because it is assumed the arm or mouse is drawn 
toward the position of the distractor stimulus (Dias da Silva & 
Postma, 2020). This measure is only reliable when the angle 
formed by the two targets and the starting position is con
stant. In the current study, two targets could be placed on 
opposite sides of the mouse cursor, forming a 180 angle, or 
they could be placed adjacent to one another. This renders the 
use of trajectory curvature in the current study less reliable, as 
the relationship between the curvature and a theoretical expla
nation for the curvature would be unclear. There was also no 
“reset” at the end of each trial where the mouse cursor would 
be moved to a constant starting position, nor was there an 
inter-trial interval. These features may affect the size of the 
effect observed (Kieslich et al., 2020). The decisions not to 
include these features were made in an effort to present 
a more continuous task, but this could have introduced the 
potential for sequential effects from trial to trial, which would 
not be present in a more traditional arm reaching experiment.

Another potential issue with our measurement of perfor
mance is its sensitivity. Movement trajectories were chosen 
as a dependent variable as it reflects real-world behavior and 
could be used to differentiate the effect of cognitive work
load at each stage of the response. However, it may not be 
sufficiently sensitive to detect subtle changes in workload, 
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especially on a short time scale. This could limit its applic
ability in real-world settings. Nevertheless, it was sufficiently 
sensitive to detect the same difference in performance on the 
primary task that the DRT detected in residual capacity, as 
seen in the right panels of Figures 5 and Figures 6. This 
measure also demonstrated its value in addressing theoretical 
questions about cognitive workload in mouse-based 
responses, which was the original focus of the current 
study. Further research is required to determine how quickly 
a reliable estimate of participant workload can be estab
lished, which would inform how applicable the measure is 
to such scenarios as adaptive user interfaces, which require 
very high temporal resolution. It may be the case that, even 
with relatively low sensitivity, submovements could be used 
to detect individual differences between users, allowing for 
user evaluation, or for use in an adaptive system that adapts 
a UI on a user-by-user basis, rather than adapting the UI 
over time for the same user. They could also be used for 
evaluating UI designs in an objective way, by comparing the 
cognitive impacts of different configurations of a UI on 
a user.

We speculated above that the faster onset times in the 
minimum-time condition indicate a redundant target effect. 
However, this was not replicated in the other measures of 
primary task performance. It is therefore unclear whether 
we actually observed a redundant target effect. Further 
investigation of a possible redundant target effect is possible 
using systems factorial technology (SFT), a non-parametric 
methodology that utilizes RT distributions (Townsend & 
Nozawa, 1995). Specifically, the workload capacity, or pro
cessing efficiency, of a process can be estimated (Townsend 
& Eidels, 2011) by comparing empirical data to 
a benchmark model, such as Miller’s Race Model (Miller, 
1982), which assumes the two targets are processed inde
pendently and in parallel, and the faster of the two processes 
to finish drives the participant’s response. Given that we 
also inferred that our pattern of results indicated no 
increased workload demand in the minimum-time condi
tion, analysis using SFT could further enrich our analysis 
and answer currently opaque questions, including the effi
ciency of target processing.

Another issue relates to the manipulation of primary task 
workload. The addition of a second target was assumed to 
increase primary task workload. Following on from the pre
vious paragraph, if we assume the perception of a target and 
the planning and execution of a response requires some 
amount of cognitive resources, such as working memory, 
then the addition of a second target would lead to higher 
primary task workload in a limited-capacity system 
(Townsend & Eidels, 2011). Only in the case of an unlimited- 
or super-capacity system, which could process multiple targets 
with no loss in efficiency, would the addition of a second 
target not impact the participant more than a single target 
alone. This was the foundation of our choice to manipulate 
primary task workload with the addition of a second target. 
However, without further analysis using SFT, we cannot be 
sure this extra processing demand affected participants’ per
formance. For example, if they simply ignored the second 
stimulus on high-load trials, they would not experience the 

expected increase in workload on those trials, and this would 
not be detectable in the current analysis. There is some 
evidence against such a confounding strategy – the finding 
that participants chose the closer target at a rate greater than 
chance suggests they processed both targets on at least some 
trials. This, in combination with the slower onset times in the 
exhaustive condition, indicates some planning of movements, 
which in turn suggests more cognitive resources would have 
been required to complete these trials.

Additionally, the increased demand of perceiving and 
responding to a second target may not have sufficiently 
increased primary task workload to be an effective workload 
manipulation. Given the lack of a significant difference in 
DRT performance across primary task workload conditions 
in the minimum-time group, the high-load condition did not 
appear to increase participants’ overall workload to an extent 
the DRT could detect. It may still be the case that participants 
processed the two targets using a limited-capacity process, 
that is to say at some cognitive cost, but this cost cannot be 
quantified using the current analysis. Additional analysis 
using SFT could further illuminate this question, while future 
research could also utilize a more demanding workload 
manipulation, such as the introduction of a new task, to 
greater differentiate the workload conditions.

4.3. Conclusion

We presented a mouse-based targeting task alongside 
a computer-based DRT to assess the effect of increased cognitive 
workload on users’ cognitive state. We applied an analysis of 
mouse movement trajectories to the resulting data set to inves
tigate whether such analysis could be applied to more real-world 
data sets. Increased primary task workload had a detrimental 
effect on users’ cognitive capacity as measured by the DRT, and 
their performance on the primary task in the form of slower 
RTs, but not in conditions where redundant targets were pre
sented. Trajectory analysis indicated that, in cases of slower RTs 
under high primary task workload, mouse movements began 
later and contained more submovements than under low work
load. This analysis provided greater nuance to our findings, and 
suggests the analysis of movement trajectories can be applied to 
real-world tasks such as UIs. Because the data were derived from 
the application itself, no additional apparatus were required, 
allowing for the use of this methodology beyond lab-based 
experiments. Movement trajectories could be used in the assess
ment of user workload to assist in UI development or research 
into the workload imposition of computer-based systems.
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Appendix A. Alternative Analysis

Movement Times
An alternative analysis of movement execution is the movement time, 

or the time between movement onset and the completion of the trial. 
Movement times were compared using two-way mixed ANOVA and 
equivalent Bayesian tests.

Figure 1 shows mean movement times across levels of primary task 
workload and stopping rule. A main effect of stopping rule was found, 
with participants in the exhaustive group (M = 441 ms, SD = 34 ms) 
completing movements faster than those in the minimum-time group 
(M = 486 ms, SD = 74 ms), F(1, 58) = 8.75, p =.004. No main effect of 
primary task workload was found, with anecdotal evidence against 
including the factor, BFInclusion = 0.48. An analysis of simple effects 

found that workload affected movement times for the exhaustive 
group, with faster movement times under high workload than low work
load, F(1, 28) = 6.49, p = .017.

This pattern of results suggests the execution stage of the responses 
was not affected by primary task workload, which is in contrast with the 
findings of the trajectory analysis presented above. This does not imply 
one measure is incorrect, however. Slower onset times could facilitate 
faster movement execution, but higher primary task workload could still 
affect the smoothness of movements. To investigate this further, an 
analysis of trajectory curvature was carried out. This can be considered 
a complementary analysis to both the submovement analysis, as it is also 
derived from movement trajectories, and movement time analysis, as 
faster movement times have been found to be associated with smaller 
curvature (Bundt et al., 2018; Erb et al., 2016).

Trajectory Curvature
It is possible the difference in the findings of the movement time 

and submovement analyses were due to the scaling procedure, in 
which movement time was used as the scaling variable in the sub
movement analysis. This may have partialled out the shared variance 
in the two data sets. To further investigate whether the trajectory data 
exhibited different trends to movement time data, additional analyses 
of the curvature of mouse trajectories was carried out, using two 
dependent variables. Scaled area first compared the ideal trajectory 
toward a target, i.e., a straight line from the initial mouse position to 
the chosen target, to the actual movement trajectory. The area under 
this curvature was taken and scaled by the distance from the initial 
mouse position and the target, as longer distances would necessitate 
more movement and hence generate greater areas. The maximum 
distance between the ideal and ideal trajectories was also analysis, as 
a measure of the extent to which the actual movement deviated from 
the ideal. Analyses were carried out using two-way mixed ANOVA 
and equivalent Bayesian tests.

The left panel of Figure 2 shows mean scaled areas under the curve 
for each level of primary task workload and stopping rule. A main effect 
of primary task workload was found, with less curvature under low 
workload (M = 3.49°2, SD = 1.00°2) than high workload (M = 3.71°2, 
SD = 1.00°2), F(1, 58) = 33.53, p < .001. An analysis of simple effects 
found this effect was driven mainly by the exhaustive group, which 
exhibited less area under the curve under low workload (M = 3.13°2, 
SD = 0.52°2) than high workload (M = 3.58°2, SD = 0.59°2), F(1, 
28) = 54.30, p < .001. No main effect of stopping rule was found, 
though Bayesian analysis found anecdotal evidence in favor of an effect, 
BFInclusion = 1.25, As is apparent from the non-parallel lines in Figure 2, 
a significant interaction effect between primary task workload and stop
ping rule was found, F(1, 58) = 31.34, p < .001.

The right panel of Figure 2 shows the mean maximum distance 
from ideal across each level of workload and stopping rule. A main 
effect of primary task workload was found, with lower maximum 
distance under low workload (M = 1.22°, SD = 0.26°) than high work
load (M = 1.32°, SD = 0.26°), F(1, 58) = 66.64, p < .001. An analysis of 
simple effects again found this effect was driven by the exhaustive 
group, which showed significantly lower maximum distances under 
low workload (M = 1.12°, SD = 0.16°) than high workload 
(M = 1.30°, SD = 0.22°), F(1, 58) = 74.44, p < .001. No main effect 
of stopping rule was found, with anecdotal evidence against including 
this factor, BFInclusion = 0.84. As with scaled area, a significant interac
tion between primary task workload and stopping rule was found, F(1, 
58) = 37.04, p < .001.

These results indicate trajectory smoothness was affected by primary 
task workload in the exhaustive group but not the minimum-time group, 
in agreement with the scaled submovement analysis and with previous 
studies that found trajectories with more submovements can be more 
curved (Flash & Henis, 1991). However, this finding is unexpected in 
light of the findings of the movement time analysis, and the previous 
findings that movement times should be positively correlated with tra
jectory curvature. The pattern of results presented above and in the main 
body of the current study suggest the movement time and trajectory 

Figure A1. Mean movement time across levels of primary task workload and 
stopping rule. Error bars represent one standard error.
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analyses reflect different behaviors, and may in fact be measuring differ
ent underlying cognitive processes or at least be affected by confounding 

factors to differing extents. However, further research would be required 
to address this discrepancy, as it is beyond the scope of the current study.

Figure A2. Mean scaled areas under the curve (left) and maximum distances from ideal (right) across levels of primary task workload and stopping rule. Error bars 
represent one standard error.
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