|   | 
Details
   web
Records
Author Friedman, J.; Korman, M.
Title Kinematic Strategies Underlying Improvement in the Acquisition of a Sequential Finger Task with Self-Generated vs. Cued Repetition Training Type Journal Article
Year 2012 Publication PLoS one Abbreviated Journal PLoS One
Volume 7 Issue 12 Pages e52063
Keywords
Abstract (down) Many motor skills, such as typing, consist of articulating simple movements into novel sequences that are executed faster and smoother with practice. Dynamics of re-organization of these movement sequences with multi-session training and its dependence on the amount of self-regulation of pace during training is not yet fully understood. In this study, participants practiced a sequence of key presses. Training sessions consisted of either externally (Cued) or self-initiated (Uncued) training. Long-term improvements in performance speed were mainly due to reducing gaps between finger movements in both groups, but Uncued training induced higher gains. The underlying kinematic strategies producing these changes and the representation of the trained sequence differed significantly across subjects, although net gains in speed were similar. The differences in long-term memory due to the type of training and the variation in strategies between subjects, suggest that the different neural mechanisms may subserve the improvements observed in overall performance.
Address Department of Cognitive Science, Macquarie University, Sydney, Australia ; ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:23272210 Approved no
Call Number Serial 41
Permanent link to this record
 

 
Author Noy, L.; Weiser, N.; Friedman, J.
Title Synchrony in Joint Action Is Directed by Each Participant's Motor Control System Type Journal Article
Year 2017 Publication Frontiers in Psychology Abbreviated Journal Front. Psychol.
Volume 8 Issue Pages 531
Keywords visuomotor tracking; mirror game; intermittent control; joint action; motor control
Abstract (down) In this work, we ask how the probability of achieving synchrony in joint action is affected by the choice of motion parameters of each individual. We use the mirror game paradigm to study how changes in leader�s motion parameters, specifically frequency and peak velocity, affect the probability of entering the state of co-confidence (CC) motion: a dyadic state of synchronized, smooth and co-predictive motions. In order to systematically study this question, we used a one-person version of the mirror game, where the participant mirrored piece-wise rhythmic movements produced by a computer on a graphics tablet. We systematically varied the frequency and peak velocity of the movements to determine how these parameters affect the likelihood of synchronized joint action. To assess synchrony in the mirror game we used the previously developed marker of co-confident (CC) motions: smooth, jitter-less and synchronized motions indicative of co-predicative control. We found that when mirroring movements with low frequencies (i.e., long duration movements), the participants never showed CC, and as the frequency of the stimuli increased, the probability of observing CC also increased. This finding is discussed in the framework of motor control studies showing an upper limit on the duration of smooth motion. We confirmed the relationship between motion parameters and the probability to perform CC with three sets of data of open-ended two-player mirror games. These findings demonstrate that when performing movements together, there are optimal movement frequencies to use in order to maximize the possibility of entering a state of synchronized joint action. It also shows that the ability to perform synchronized joint action is constrained by the properties of our motor control systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-1078 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 84
Permanent link to this record
 

 
Author Friedman, J.; Amiaz, A.; Korman, M.
Title The online and offline effects of changing movement timing variability during training on a finger-opposition task Type Journal Article
Year 2022 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 12 Issue 1 Pages 13319
Keywords Fingers; Humans; *Learning; *Motor Skills; Movement; Psychomotor Performance; Upper Extremity
Abstract (down) In motor learning tasks, there is mixed evidence for whether increased task-relevant variability in early learning stages leads to improved outcomes. One problem is that there may be a connection between skill level and motor variability, such that participants who initially have more variability may also perform worse on the task, so will have more room to improve. To avoid this confound, we experimentally manipulated the amount of movement timing variability (MTV) during training to test whether it improves performance. Based on previous studies showing that most of the improvement in finger-opposition tasks comes from optimizing the relative onset time of the finger movements, we used auditory cues (beeps) to guide the onset times of sequential movements during a training session, and then assessed motor performance after the intervention. Participants were assigned to three groups that either: (a) followed a prescribed random rhythm for their finger touches (Variable MTV), (b) followed a fixed rhythm (Fixed control MTV), or (c) produced the entire sequence following a single beep (Unsupervised control MTV). While the intervention was successful in increasing MTV during training for the Variable group, it did not lead to improved outcomes post-training compared to either control group, and the use of fixed timing led to significantly worse performance compared to the Unsupervised control group. These results suggest that manipulating MTV through auditory cues does not produce greater learning than unconstrained training in motor sequence tasks.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:35922460; PMCID:PMC9349301 Approved no
Call Number Serial 115
Permanent link to this record
 

 
Author Friedman, Jason; SKM, Varadhan; Zatsiorsky, Vladimir M.; Latash, Mark L.
Title The sources of two components of variance: an example of multifinger cyclic force production tasks at different frequencies Type Journal Article
Year 2009 Publication Experimental Brain Research Abbreviated Journal Exp Brain Res
Volume 196 Issue 2 Pages 263-277
Keywords
Abstract (down) In a multifinger cyclic force production task, the finger force variance measured across trials can be decomposed into two components, one that affects the combined force output (“bad variance”) and one that does not (“good variance”). Previous studies have found similar time patterns of “bad variance” and force rate leading to an approximately linear relationship between them. Based on this finding and a recently developed model of multifinger force production, we expected the “bad variance” during cyclic force production to increase monotonically with the rate of force change, both within a cycle and across trials at different frequencies. Alternatively, “bad variance” could show a dependence on task frequency, not on actual force derivative values. Healthy subjects were required to produce cyclic force patterns to prescribed targets by pressing on unidimensional force sensors, at a frequency set by a metronome. The task was performed with only the index finger, and with all four fingers. In the task with all four fingers, the “good variance” increased approximately linearly with an increase in the force magnitude. The “bad variance” showed within-a-cycle modulation similar to that of the force rate. However, an increase in the frequency did not lead to an increase in the “bad variance” that could be expected based on the natural relationships between action frequency and the rate of force change modulation. The results have been interpreted in the framework of an earlier model of multifinger force production where “bad variance” is a result of variance of the timing parameter. The unexpected lack of modulation of the “bad variance” with frequency suggests a drop in variance of the timing parameter with increased frequency. This mechanism may serve to maintain a constant acceptable level of variance under different conditions.
Address Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1432-1106 ISBN Medium
Area Expedition Conference
Notes PMID:19468721 Approved no
Call Number Penn State @ write.to.jason @ Serial 15
Permanent link to this record
 

 
Author Awasthi, Bhuvanesh; Friedman, Jason; Williams, Mark
Title Faster, stronger, lateralized: Low spatial frequency information supports face processing Type Journal Article
Year 2011 Publication Neuropsychologia Abbreviated Journal
Volume 49 Issue 13 Pages 3583-3590
Keywords
Abstract (down) Distinct visual pathways are selectively tuned for processing specific spatial frequencies. Recently, Awasthi, Friedman and Williams (2011) reported fast categorisation of faces at periphery, arguing for primacy of low spatial frequency (LSF) information in face processing. However, previous studies have also documented rapid categorization of places and natural scenes. Here, we tested if the LSF advantage is face specific or also involved in place perception. We used visually guided reaching as a continuous behavioral measure to examine the processing of LSF and high spatial frequency (HSF) hybrids, presented at the periphery. Subjects reached out and touched targets and their movements were recorded. The trajectories revealed that LSF interference was both 95 ms earlier and stronger for faces than places and was lateralized to the left visual field. The early processing of LSF information supports the assumption that faces are prioritised and provides a (neural) framework for such specialised processing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Penn State @ write.to.jason @ Serial 25
Permanent link to this record