Geller, N., Moringen, A., & Friedman, J. (2023). Learning juggling by gradually increasing difficulty vs. learning the complete skill results in different learning patterns. Front Psychol, 14, 1284053.
Abstract: Motor learning is central to sports, medicine, and other health professions as it entails learning through practice. To achieve proficiency in a complex motor task, many hours of practice are required. Therefore, finding ways to speed up the learning process is important. This study examines the impact of different training approaches on learning three-ball cascade juggling. Participants were assigned to one of two groups: practicing by gradually increasing difficulty and elements of the juggling movement (“learning in parts”) or training on the complete skill from the start (“all-at-once”). Results revealed that although the all-at-once group in the early stages of learning showed greater improvement in performance, the “learning in parts” group managed to catch up, even over a relatively short period of time. The lack of difference in performance between the groups at the end of the training session suggests that the choice of training regime (between all-at-once and learning in parts), at least in the short term, can be selected based on other factors such as the learner's preference, practical considerations, and cognitive style.
|
Hoffman, J. R., Liebermann, D., & Gusis, A. (1997). Relationship of leg strength and power to ground reaction forces in both experienced and novice jump trained personnel. Aviat Space Environ Med, 68(8), 710–714.
Abstract: METHODS: There were 14 male soldiers who participated in this study examining the relationship of leg strength and power on landing performance. Subjects were separated into two groups. The first group (E, n = 7) were parachute training instructors and highly experienced in parachute jumping. The second group of subjects (N, n = 7) had no prior parachute training experience and were considered novice jumpers. All subjects were tested for one-repetition maximum (1 RM) squat strength and maximal jump power. Ground reaction forces (GRF) and the time to peak force (TPF) at landing were measured from jumps at four different heights (95 cm, 120 cm, 145 cm, and 170 cm). All jumps were performed from a customized jump platform onto a force plate. RESULTS: No differences were seen between E and N in either IRM squat strength or in MJP. In addition, no differences were seen between the groups for time to peak force at any jump height. However, significantly greater GRF were observed in E compared to N. Moderate to high correlations between maximal jump power and GRF (r values ranging from 0.62-0.93) were observed in E. Although maximal jump power and the TPF was significantly correlated (r = -0.89) at only 120 cm for E, it was interesting to note that the correlations between MJP and the time to peak force in E were all negative and that the correlations between these variables in N were all positive. CONCLUSIONS: These results suggest that experienced parachutists may use a different landing strategy than novice jumpers. This difference may be reflected by differences in GRF generated during impact and a more efficient utilization of muscle power during the impact phase of the landing.
|
Friedman, J., & Korman, M. (2012). Kinematic Strategies Underlying Improvement in the Acquisition of a Sequential Finger Task with Self-Generated vs. Cued Repetition Training. PLoS One, 7(12), e52063.
Abstract: Many motor skills, such as typing, consist of articulating simple movements into novel sequences that are executed faster and smoother with practice. Dynamics of re-organization of these movement sequences with multi-session training and its dependence on the amount of self-regulation of pace during training is not yet fully understood. In this study, participants practiced a sequence of key presses. Training sessions consisted of either externally (Cued) or self-initiated (Uncued) training. Long-term improvements in performance speed were mainly due to reducing gaps between finger movements in both groups, but Uncued training induced higher gains. The underlying kinematic strategies producing these changes and the representation of the trained sequence differed significantly across subjects, although net gains in speed were similar. The differences in long-term memory due to the type of training and the variation in strategies between subjects, suggest that the different neural mechanisms may subserve the improvements observed in overall performance.
|
Mindy F. Levin, Osnat Snir, Dario G. Liebermann, Harold Weingarden, & Patrice L. Weiss. (2012). Virtual Reality Versus Conventional Treatment of Reaching Ability in Chronic Stroke: Clinical Feasibility Study. Neurology and Therapy, 1(3), 1–15.
Abstract: Introduction
The objective of this study was to evaluate the potential of exercises performed in a 2D video-capture virtual reality (VR) training environment to improve upper limb motor ability in stroke patients compared to those performed in conventional therapy.
Methods
A small sample randomized control trial, in an outpatient rehabilitation center with 12 patients with chronic stroke, aged 33–80 years, who were randomly allocated to video-capture VR therapy and conventional therapy groups. All patients participated in four clinical evaluation sessions (pre-test 1, pre-test 2, post-test, follow-up) and nine 45-minute intervention sessions over a 3-week period. Main outcomes assessed were Body Structure and Function (impairment: Fugl–Meyer Assessment [FMA]; Composite Spasticity Index [CSI]; Reaching Performance Scale for Stroke), Activity (Box and Blocks; Wolf Motor Function Test [WMFT]), and Participation (Motor Activity Log) levels of the International Classification of Functioning.
Results
Improvements occurred in both groups, but more patients in the VR group improved upper limb clinical impairment (FMA, CSI) and activity scores (WMFT) and improvements occurred earlier. Patients in the VR group also reported satisfaction with the novel treatment.
Conclusions
The modest advantage of VR over conventional training supports further investigation of the effect of video-capture VR or VR combined with conventional therapy in larger-scale randomized, more intense controlled studies.
|
Noy, L., Weiser, N., & Friedman, J. (2017). Synchrony in Joint Action Is Directed by Each Participant's Motor Control System. Front. Psychol., 8, 531.
Abstract: In this work, we ask how the probability of achieving synchrony in joint action is affected by the choice of motion parameters of each individual. We use the mirror game paradigm to study how changes in leader�s motion parameters, specifically frequency and peak velocity, affect the probability of entering the state of co-confidence (CC) motion: a dyadic state of synchronized, smooth and co-predictive motions. In order to systematically study this question, we used a one-person version of the mirror game, where the participant mirrored piece-wise rhythmic movements produced by a computer on a graphics tablet. We systematically varied the frequency and peak velocity of the movements to determine how these parameters affect the likelihood of synchronized joint action. To assess synchrony in the mirror game we used the previously developed marker of co-confident (CC) motions: smooth, jitter-less and synchronized motions indicative of co-predicative control. We found that when mirroring movements with low frequencies (i.e., long duration movements), the participants never showed CC, and as the frequency of the stimuli increased, the probability of observing CC also increased. This finding is discussed in the framework of motor control studies showing an upper limit on the duration of smooth motion. We confirmed the relationship between motion parameters and the probability to perform CC with three sets of data of open-ended two-player mirror games. These findings demonstrate that when performing movements together, there are optimal movement frequencies to use in order to maximize the possibility of entering a state of synchronized joint action. It also shows that the ability to perform synchronized joint action is constrained by the properties of our motor control systems.
|