|   | 
Details
   web
Records
Author Park, J.; Pazin, N.; Friedman, J.; Zatsiorsky, V.M.; Latash, M.L.
Title Mechanical properties of the human hand digits: Age-related differences Type Journal Article
Year 2014 Publication Clinical Biomechanics Abbreviated Journal
Volume 29 Issue 2 Pages 129–137
Keywords hand; aging; friction; apparent stiffness; damping
Abstract Background

Mechanical properties of human digits may have significant implications for the hand function. We quantified several mechanical characteristics of individual digits in young and older adults.

Methods

Digit tip friction was measured at several normal force values using a method of induced relative motion between the digit tip and the object surface. A modified quick-release paradigm was used to estimate digit apparent stiffness, damping, and inertial parameters. The subjects grasped a vertical handle instrumented with force/moment sensors using a prismatic grasp with four digits; the handle was fixed to the table. Unexpectedly, one of the sensors yielded leading to a quick displacement of the corresponding digit. A second-order, linear model was used to fit the force/displacement data.

Findings

Friction of the digit pads was significantly lower in older adults. The apparent stiffness coefficient values were higher while the damping coefficients were lower in older adults leading to lower damping ratio. The damping ratio was above unity for most data in young adults and below unity for older adults. Quick release of a digit led to force changes in other digits of the hand, likely due to inertial hand properties. These phenomena of “mechanical enslaving” were smaller in older adults although no significant difference was found in the inertial parameter in the two groups.

Interpretations

The decreased friction and damping ratio present challenges for the control of everyday prehensile tasks. They may lead to excessive digit forces and low stability of the grasped object.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (down) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-0033 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 73
Permanent link to this record
 

 
Author Portnoy, S.; Rosenberg, L.; Alazraki, T.; Elyakim, E.; Friedman, J.
Title Differences in Muscle Activity Patterns and Graphical Product Quality in Children Copying and Tracing Activities on Horizontal or Vertical Surfaces Type Journal Article
Year 2015 Publication Journal of Electromyography and Kinesiology Abbreviated Journal Journal of Electromyography and Kinesiology
Volume 25 Issue 3 Pages 540�547
Keywords Motor equivalence; Electromyography; Tablet; Occupational Therapy; Muscle fatigue; Motor control
Abstract The observation that a given task, e.g. producing a signature, looks similar when created by different motor commands and different muscles groups is known as motor equivalence. Relatively little data exists regarding the characteristics of motor equivalence in children. In this study, we compared the level of performance when performing a tracing task and copying figures in two common postures: while sitting at a desk and while standing in front of a wall, among preschool children. In addition, we compared muscle activity patterns in both postures. Specifically, we compared the movements of 35 five- to six-year old children, recording the same movements of copying figures and path tracing on an electronic tablet in both a horizontal orientation, while sitting, and a vertical orientation, while standing. Different muscle activation patterns were observed between the postures, however no significant difference in the performance level was found, providing evidence of motor equivalence at this young age. The study presents a straightforward method of assessing motor equivalence that can be extended to other stages of development as well as motor disorders.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (down) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-6411 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 77
Permanent link to this record
 

 
Author Friedman, J.; Korman, M.
Title Offline Optimization of the Relative Timing of Movements in a Sequence Is Blocked by Retroactive Behavioral Interference Type Journal Article
Year 2016 Publication Frontiers in Human Neuroscience Abbreviated Journal Front. Hum. Neurosci.
Volume 10 Issue Pages 623
Keywords learning; interference; consolidation; finger movements; kinematics
Abstract Acquisition of motor skills often involves the concatenation of single movements into sequences. Along the course of learning, sequential performance becomes progressively faster and smoother, presumably by optimization of both motor planning and motor execution. Following its encoding during training, “how-to” memory undergoes consolidation, reflecting transformations in performance and its neurobiological underpinnings over time. This offline post-training memory process is characterized by two phenomena: reduced sensitivity to interference and the emergence of delayed, typically overnight, gains in performance. Here, using a training protocol that effectively induces motor sequence memory consolidation, we tested temporal and kinematic parameters of performance within (online) and between (offline) sessions, and their sensitivity to retroactive interference. One group learned a given finger-to-thumb opposition sequence (FOS), and showed robust delayed (consolidation) gains in the number of correct sequences performed at 24 h. A second group learned an additional (interference) FOS shortly after the first and did not show delayed gains. Reduction of touch times and inter-movement intervals significantly contributed to the overall offline improvement of performance overnight. However, only the offline inter-movement interval shortening was selectively blocked by the interference experience. Velocity and amplitude, comprising movement time, also significantly changed across the consolidation period but were interference-insensitive. Moreover, they paradoxically canceled out each other. Current results suggest that shifts in the representation of the trained sequence are subserved by multiple processes: from distinct changes in kinematic characteristics of individual finger movements to high-level, temporal reorganization of the movements as a unit. Each of these processes has a distinct time course and a specific susceptibility to retroactive interference. This multiple-component view may bridge the gap in understanding the link between the behavioral changes, which define online and offline learning, and the biological mechanisms that support those changes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (down) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1662-5161 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 83
Permanent link to this record
 

 
Author Noy, L.; Weiser, N.; Friedman, J.
Title Synchrony in Joint Action Is Directed by Each Participant's Motor Control System Type Journal Article
Year 2017 Publication Frontiers in Psychology Abbreviated Journal Front. Psychol.
Volume 8 Issue Pages 531
Keywords visuomotor tracking; mirror game; intermittent control; joint action; motor control
Abstract In this work, we ask how the probability of achieving synchrony in joint action is affected by the choice of motion parameters of each individual. We use the mirror game paradigm to study how changes in leader�s motion parameters, specifically frequency and peak velocity, affect the probability of entering the state of co-confidence (CC) motion: a dyadic state of synchronized, smooth and co-predictive motions. In order to systematically study this question, we used a one-person version of the mirror game, where the participant mirrored piece-wise rhythmic movements produced by a computer on a graphics tablet. We systematically varied the frequency and peak velocity of the movements to determine how these parameters affect the likelihood of synchronized joint action. To assess synchrony in the mirror game we used the previously developed marker of co-confident (CC) motions: smooth, jitter-less and synchronized motions indicative of co-predicative control. We found that when mirroring movements with low frequencies (i.e., long duration movements), the participants never showed CC, and as the frequency of the stimuli increased, the probability of observing CC also increased. This finding is discussed in the framework of motor control studies showing an upper limit on the duration of smooth motion. We confirmed the relationship between motion parameters and the probability to perform CC with three sets of data of open-ended two-player mirror games. These findings demonstrate that when performing movements together, there are optimal movement frequencies to use in order to maximize the possibility of entering a state of synchronized joint action. It also shows that the ability to perform synchronized joint action is constrained by the properties of our motor control systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (down) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-1078 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 84
Permanent link to this record
 

 
Author Raveh, E.; Friedman, J.; Portnoy, S.
Title Visuomotor behaviors and performance in a dual-task paradigm with and without vibrotactile feedback when using a myoelectric controlled hand Type Journal Article
Year 2018 Publication Assistive Technology Abbreviated Journal Assistive Technology
Volume 30 Issue Pages 274-280
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (down) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1040-0435 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 85
Permanent link to this record