|   | 
Details
   web
Records
Author Friedman, Jason; SKM, Varadhan; Zatsiorsky, Vladimir M.; Latash, Mark L.
Title The sources of two components of variance: an example of multifinger cyclic force production tasks at different frequencies Type Journal Article
Year 2009 Publication Experimental Brain Research Abbreviated Journal Exp Brain Res
Volume 196 Issue 2 Pages 263-277
Keywords
Abstract In a multifinger cyclic force production task, the finger force variance measured across trials can be decomposed into two components, one that affects the combined force output (“bad variance”) and one that does not (“good variance”). Previous studies have found similar time patterns of “bad variance” and force rate leading to an approximately linear relationship between them. Based on this finding and a recently developed model of multifinger force production, we expected the “bad variance” during cyclic force production to increase monotonically with the rate of force change, both within a cycle and across trials at different frequencies. Alternatively, “bad variance” could show a dependence on task frequency, not on actual force derivative values. Healthy subjects were required to produce cyclic force patterns to prescribed targets by pressing on unidimensional force sensors, at a frequency set by a metronome. The task was performed with only the index finger, and with all four fingers. In the task with all four fingers, the “good variance” increased approximately linearly with an increase in the force magnitude. The “bad variance” showed within-a-cycle modulation similar to that of the force rate. However, an increase in the frequency did not lead to an increase in the “bad variance” that could be expected based on the natural relationships between action frequency and the rate of force change modulation. The results have been interpreted in the framework of an earlier model of multifinger force production where “bad variance” is a result of variance of the timing parameter. The unexpected lack of modulation of the “bad variance” with frequency suggests a drop in variance of the timing parameter with increased frequency. This mechanism may serve to maintain a constant acceptable level of variance under different conditions.
Address Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1432-1106 ISBN Medium
Area Expedition Conference
Notes PMID:19468721 Approved no
Call Number Penn State @ write.to.jason @ Serial 15
Permanent link to this record
 

 
Author Friedman, Jason; Latash, Mark L.; Zatsiorsky, Vladimir M.
Title Prehension synergies: a study of digit force adjustments to the continuously varied load force exerted on a partially constrained hand-held object Type Journal Article
Year 2009 Publication Experimental Brain Research Abbreviated Journal Exp Brain Res
Volume 197 Issue 1 Pages 1-13
Keywords
Abstract We examined how the digit forces adjust when a load force acting on a hand-held object continuously varies. The subjects were required to hold the handle still while a linearly increasing and then decreasing force was applied to the handle. The handle was constrained, such that it could only move up and down, and rotate about a horizontal axis. In addition, the moment arm of the thumb tangential force was 1.5 times the moment arm of the virtual finger (VF, an imagined finger with the mechanical action equal to that of the four fingers) force. Unlike the situation when there are equal moment arms, the experimental setup forced the subjects to choose between (a) sharing equally the increase in load force between the thumb and VF but generating a moment of tangential force, which had to be compensated by negatively co-varying the moment due to normal forces, or (b) sharing unequally the load force increase between the thumb and VF but preventing generation of a moment of tangential forces. We found that different subjects tended to use one of these two strategies. These findings suggest that the selection by the CNS of prehension synergies at the VF-thumb level with respect to the moment of force is non-obligatory and reflects individual subject preferences. This unequal sharing of the load by the tangential forces, in contrast to the previously observed equal sharing, suggests that the invariant feature of prehension may be a correlated increase in tangential forces rather than an equal increase.
Address Department of Kinesiology, The Pennsylvania State University, 39 Recreation Building, University Park, PA, 16802, USA, jason.friedman@psu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1432-1106 ISBN Medium
Area Expedition Conference
Notes PMID:19554319 Approved no
Call Number Penn State @ write.to.jason @ Serial 16
Permanent link to this record
 

 
Author Friedman, Jason; Flash, Tamar
Title Trajectory of the index finger during grasping Type Journal Article
Year 2009 Publication Experimental Brain Research Abbreviated Journal Exp Brain Res
Volume 196 Issue 4 Pages 497-509
Keywords
Abstract The trajectory of the index finger during grasping movements was compared to the trajectories predicted by three optimization-based models. The three models consisted of minimizing the integral of the weighted squared joint derivatives along the path (inertia-like cost), minimizing torque change, and minimizing angular jerk. Of the three models, it was observed that the path of the fingertip and the joint trajectories, were best described by the minimum angular jerk model. This model, which does not take into account the dynamics of the finger, performed equally well when the inertia of the finger was altered by adding a 20 g weight to the medial phalange. Thus, for the finger, it appears that trajectories are planned based primarily on kinematic considerations at a joint level.
Address Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel, write.to.jason@gmail.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1432-1106 ISBN Medium
Area Expedition Conference
Notes PMID:19521692 Approved no
Call Number Penn State @ write.to.jason @ Serial 17
Permanent link to this record