|   | 
Details
   web
Records
Author (up) Awasthi, Bhuvanesh; Friedman, Jason; Williams, Mark
Title Faster, stronger, lateralized: Low spatial frequency information supports face processing Type Journal Article
Year 2011 Publication Neuropsychologia Abbreviated Journal
Volume 49 Issue 13 Pages 3583-3590
Keywords
Abstract Distinct visual pathways are selectively tuned for processing specific spatial frequencies. Recently, Awasthi, Friedman and Williams (2011) reported fast categorisation of faces at periphery, arguing for primacy of low spatial frequency (LSF) information in face processing. However, previous studies have also documented rapid categorization of places and natural scenes. Here, we tested if the LSF advantage is face specific or also involved in place perception. We used visually guided reaching as a continuous behavioral measure to examine the processing of LSF and high spatial frequency (HSF) hybrids, presented at the periphery. Subjects reached out and touched targets and their movements were recorded. The trajectories revealed that LSF interference was both 95 ms earlier and stronger for faces than places and was lateralized to the left visual field. The early processing of LSF information supports the assumption that faces are prioritised and provides a (neural) framework for such specialised processing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Penn State @ write.to.jason @ Serial 25
Permanent link to this record
 

 
Author (up) Awasthi, Bhuvanesh; Friedman, Jason; Williams, Mark A
Title Reach Trajectories Reveal Delayed Processing of Low Spatial Frequency Faces in Developmental Prosopagnosia Type Journal Article
Year 2012 Publication Cognitive Neuroscience Abbreviated Journal
Volume 3 Issue 2 Pages 120-130
Keywords
Abstract Developmental prosopagnosia (DP) is characterized by a selective deficit in face recognition despite normal cognitive and neurological functioning. Previous research has established configural processing deficits in DP subjects. Low spatial frequency (LSF) information subserves configural face processing. Using hybrid stimuli, here we examined the evolution of perceptual dynamics and integration of LSF information by DP subjects while they pointed to high spatial frequency (HSF) face targets. Permutation analysis revealed a 230-ms delay in LSF processing by DP subjects as compared to controls. This delayed processing is likely to contribute to the difficulties associated with face recognition in DP subjects and is reflective of their alleged reliance on local rather than global features in face perception. These results suggest that quick and efficient processing of LSF information is critical for the development of normal face perception.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Penn State @ write.to.jason @ Serial 27
Permanent link to this record
 

 
Author (up) Awasthi, Bhuvanesh; Friedman, Jason; Williams, Mark A
Title Processing of low spatial frequency faces at periphery in choice reaching tasks Type Journal Article
Year 2011 Publication Neuropsychologia Abbreviated Journal
Volume 49 Issue 7 Pages 2136-2141
Keywords
Abstract Various aspects of face processing have been associated with distinct ranges of spatial frequencies. Configural processing of faces depends chiefly on low spatial frequency (LSF) information whereas high spatial frequency (HSF) supports feature based processing. However, it has also been argued that face processing has a foveal-bias (HSF channels dominate the fovea). Here we used reach trajectories as a continuous behavioral measure to study perceptual processing of faces. Experimental stimuli were LSF–HSF hybrids of male and female faces superimposed and were presented peripherally and centrally. Subject reached out to touch a specified sex and their movements were recorded. The reaching trajectories reveal that there is less effect of (interference by) LSF faces at fovea as compared to periphery while reaching to HSF targets. These results demonstrate that peripherally presented LSF information, carried chiefly by magnocellular channels, enables efficient processing of faces, possibly via a retinotectal (subcortical) pathway.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 24
Permanent link to this record