|   | 
Details
   web
Records
Author (up) Frenkel-Toledo, S.; Bentin, S.; Perry, A.; Liebermann, D.G.; Soroker, N.
Title Dynamics of the EEG Power in the Frequency and Spatial Domains During Observation and Execution of Manual Movements Type Journal Article
Year 2013 Publication Brain Research Abbreviated Journal Brain Res
Volume 1509 Issue Pages 43-57
Keywords
Abstract Mu suppression is the attenuation of EEG power in the alpha frequency range (8-12Hz) while executing or observing a motor action. Whereas typically observed at central scalp sites, there are diverging reports about the extent of the attenuation over the cortical mantle, its exact frequency range and the specificity of this phenomenon. We investigated the modulation of EEG oscillations in frequency-bands from 4 to 12Hz at frontal, central, parietal and occipital sites during the execution of manual movements and during observation of similar actions from allocentric (i.e., facing the actor) and egocentric (i.e., seeing the actor from behind) viewpoints. Suppression was determined relative to observation of a non-biological movement. Action observation elicited greater suppression in the lower (8-10Hz) compared to the higher mu range (10-12Hz), and greater suppression in the entire 4-12Hz range at frontal and central sites compared to parietal and occipital sites. In addition, suppression tended to be greater during observation of a motor action from allocentric compared to egocentric viewpoints. During execution of movement, suppression of the EEG occurred primarily in the higher alpha range and was absent at occipital sites. In the theta range (4-8Hz), the EEG amplitude was suppressed during action observation and execution. The results suggest a functional distinction between modulation of mu and alpha rhythms, and between the higher and lower ranges of the mu rhythms. The activity of the presumed human mirror neuron system seems primarily evident in the lower mu range and in the theta range.
Address Sackler Faculty of Medicine, Tel Aviv University, Israel; Department of Neurological Rehabilitation, Loewenstein Hospital, Raanana, Israel. Electronic address: silvi197@bezeqint.net
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-8993 ISBN Medium
Area Expedition Conference
Notes PMID:23500633 Approved no
Call Number Serial 68
Permanent link to this record
 

 
Author (up) Frenkel-Toledo, S.; Liebermann, D.G.; Bentin, S.; Soroker, N.
Title Dysfunction of the Human Mirror Neuron System in Ideomotor Apraxia: Evidence from Mu Suppression Type Journal Article
Year 2016 Publication Journal of Cognitive Neuroscience Abbreviated Journal J Cogn Neurosci
Volume Issue Pages
Keywords
Abstract Stroke patients with ideomotor apraxia (IMA) have difficulties controlling voluntary motor actions, as clearly seen when asked to imitate simple gestures performed by the examiner. Despite extensive research, the neurophysiological mechanisms underlying failure to imitate gestures in IMA remain controversial. The aim of the current study was to explore the relationship between imitation failure in IMA and mirror neuron system (MNS) functioning. Mirror neurons were found to play a crucial role in movement imitation and in imitation-based motor learning. Their recruitment during movement observation and execution is signaled in EEG recording by suppression of the lower (8-10 Hz) mu range. We examined the modulation of EEG in this range in stroke patients with left (n = 21) and right (n = 15) hemisphere damage during observation of video clips showing different manual movements. IMA severity was assessed by the DeRenzi's standardized diagnostic test. Results showed that failure to imitate observed manual movements correlated with diminished mu suppression in patients with damage to the right inferior parietal lobule and in patients with damage to the right inferior frontal gyrus pars opercularis-areas where major components of the human MNS are assumed to reside. Voxel-based lesion symptom mapping revealed a significant impact on imitation capacity for the left inferior and superior parietal lobules and the left post central gyrus. Both left and right hemisphere damages were associated with imitation failure typical of IMA, yet a clear demonstration of relationship to the MNS was obtained only in the right hemisphere damage group. Suppression of the 8-10 Hz range was stronger in central compared with occipital sites, pointing to a dominant implication of mu rather than alpha rhythms. However, the suppression correlated with De Renzi's apraxia test scores not only in central but also in occipital sites, suggesting a multifactorial mechanism for IMA, with a possible impact for deranged visual attention (alpha suppression) beyond the effect of MNS damage (mu suppression).
Address Loewenstein Hospital, Ra'anana, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0898-929X ISBN Medium
Area Expedition Conference
Notes PMID:26942323 Approved no
Call Number Serial 82
Permanent link to this record
 

 
Author (up) Frenkel-Toledoa, S.; Bentin, S.; Perry, A.; Liebermann, D. G.; Soroker, N.
Title Mirror-neuron system recruitment by action observation: Effects of focal brain damage on mu suppression Type Journal Article
Year 2014 Publication NeuroImage Abbreviated Journal
Volume 87 Issue Pages 127-137
Keywords
Abstract Mu suppression is the attenuation of EEG power in the alpha frequency range (8-12 Hz), recorded over the sensorimotor cortex during execution and observation of motor actions. Based on this dual characteristic it is thought to signalize activation of a human analogue of the mirror neuron system (MNS) found in macaque monkeys, though much uncertainty remains concerning its specificity and full significance. To further explore the hypothesized relationship between mu suppression and MNS activation, we investigated how it is affected by damage to cortical regions, including areas where the MNS is thought to reside. EEG was recorded in 33 first-event stroke patients during observation of video-clips showing reaching and grasping hand movements. We examined the modulation of EEG oscillations at central and occipital sites, and analyzed separately the lower (8-10 Hz) and higher (10-12 Hz) segments of the alpha/mu range. Suppression was determined relative to observation of a non-biological movement. Normalized lesion data were used to investigate how damage to regions of the fronto-parietal cortex affects the pattern of suppression. The magnitude of mu suppression during action observation was significantly reduced in the affected hemisphere compared to the unaffected hemisphere. Differences between the hemispheres were significant at central (sensorimotor) sites but not at occipital (visual) sites. Total hemispheric volume loss did not correlate with mu suppression. Suppression in the lower mu range in the unaffected hemisphere (C3) correlated with lesion extent within the right inferior parietal cortex. Our lesion study supports the role of mu suppression as a marker of MNS activation, as suggested by findings gathered in previous studies in normal subjects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 71
Permanent link to this record