|   | 
Details
   web
Records
Author Banina, M.C.; Molad, R.; Solomon, J.S.; Berman, S.; Soroker, N.; Frenkel-Toledo, S.; Liebermann, D.G.; Levin, M.F.
Title Exercise intensity of the upper limb can be enhanced using a virtual rehabilitation system Type Journal Article
Year 2020 Publication Disability and Rehabilitation. Assistive Technology Abbreviated Journal Disabil Rehabil Assist Technol
Volume Issue Pages 1-7
Keywords Stroke; difficulty; exercise therapy; intensity; personalized exercise; upper limb; virtual reality
Abstract (up) Purpose: Motor recovery of the upper limb (UL) is related to exercise intensity, defined as movement repetitions divided by minutes in active therapy, and task difficulty. However, the degree to which UL training in virtual reality (VR) applications deliver intense and challenging exercise and whether these factors are considered in different centres for people with different sensorimotor impairment levels is not evidenced. We determined if (1) a VR programme can deliver high UL exercise intensity in people with sub-acute stroke across different environments and (2) exercise intensity and difficulty differed among patients with different levels of UL sensorimotor impairment.Methods: Participants with sub-acute stroke (<6 months) with Fugl-Meyer scores ranging from 14 to 57, completed 10 approximately 50-min UL training sessions using three unilateral and one bilateral VR activity over 2 weeks in centres located in three countries. Training time, number of movement repetitions, and success rates were extracted from game activity logs. Exercise intensity was calculated for each participant, related to UL impairment, and compared between centres.Results: Exercise intensity was high and was progressed similarly in all centres. Participants had most difficulty with bilateral and lateral reaching activities. Exercise intensity was not, while success rate of only one unilateral activity was related to UL severity.Conclusion: The level of intensity attained with this VR exercise programme was higher than that reported in current stroke therapy practice. Although progression through different activity levels was similar between centres, clearer guidelines for exercise progression should be provided by the VR application.Implications for rehabilitationVR rehabilitation systems can be used to deliver intensive exercise programmes.VR rehabilitation systems need to be designed with measurable progressions through difficulty levels.
Address Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Laval, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-3107 ISBN Medium
Area Expedition Conference
Notes PMID:32421460 Approved no
Call Number Serial 106
Permanent link to this record
 

 
Author Berman, S.; Liebermann, D.G.; McIntyre, J.
Title Constrained Motion Control on a Hemispherical Surface – Path Planning Type Journal Article
Year 2014 Publication Journal of Neurophysiology Abbreviated Journal J Neurophysiol
Volume 111 Issue 5 Pages 954-968
Keywords Constrained motion; geodesics; path planning
Abstract (up) Surface-constrained motion, i.e., motion constraint by a rigid surface, is commonly found in daily activities. The current work investigates the choice of hand paths constrained to a concave hemispherical surface. To gain insight regarding the paths and their relationship with task dynamics, we simulated various control policies. The simulations demonstrated that following a geodesic path is advantageous not only in terms of path length, but also in terms of motor planning and sensitivity to motor command errors. These stem from the fact that the applied forces lie in a single plane (that of the geodesic path itself). To test whether human subjects indeed follow the geodesic, and to see how such motion compares to other paths, we recorded movements in a virtual haptic-visual environment from eleven healthy subjects. The task was comprised of point-to-point motion between targets at two elevations (30 degrees and 60 degrees ). Three typical choices of paths were observed from a frontal plane projection of the paths: circular arcs, straight lines, and arcs close to the geodesic path for each elevation. Based on the measured hand paths, we applied k-means blind separation to divide the subjects into three groups and compared performance indicators. The analysis confirmed that subjects who followed paths closest to the geodesic produced faster and smoother movements, compared to the others. The 'better' performance reflects the dynamical advantages of following the geodesic path, as shown by the simulations, and may also reflect invariant features of the control policies used to produce such a surface-constrained motion.
Address Ben-Gurion University of the Negev
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3077 ISBN Medium
Area Expedition Conference
Notes PMID:24259548 Approved no
Call Number Serial 72
Permanent link to this record
 

 
Author Liebermann, D.G.; Krasovsky, T.; Berman, S.
Title Planning maximally smooth hand movements constrained to nonplanar workspaces Type Journal Article
Year 2008 Publication Journal of Motor Behavior Abbreviated Journal J Mot Behav
Volume 40 Issue 6 Pages 516-531
Keywords Adaptation, Physiological; Adult; Algorithms; Female; Hand/*physiology; Humans; *Intention; Kinesthesis/*physiology; Male; Models, Statistical; Movement/*physiology; Psychomotor Performance/*physiology; Reference Values; Writing
Abstract (up) The article characterizes hand paths and speed profiles for movements performed in a nonplanar, 2-dimensional workspace (a hemisphere of constant curvature). The authors assessed endpoint kinematics (i.e., paths and speeds) under the minimum-jerk model assumptions and calculated minimal amplitude paths (geodesics) and the corresponding speed profiles. The authors also calculated hand speeds using the 2/3 power law. They then compared modeled results with the empirical observations. In all, 10 participants moved their hands forward and backward from a common starting position toward 3 targets located within a hemispheric workspace of small or large curvature. Comparisons of modeled observed differences using 2-way RM-ANOVAs showed that movement direction had no clear influence on hand kinetics (p < .05). Workspace curvature affected the hand paths, which seldom followed geodesic lines. Constraining the paths to different curvatures did not affect the hand speed profiles. Minimum-jerk speed profiles closely matched the observations and were superior to those predicted by 2/3 power law (p < .001). The authors conclude that speed and path cannot be unambiguously linked under the minimum-jerk assumption when individuals move the hand in a nonplanar 2-dimensional workspace. In such a case, the hands do not follow geodesic paths, but they preserve the speed profile, regardless of the geometric features of the workspace.
Address Department of Physical Therapy, The Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Israel. dlieberm@post.tau.ac.il
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2895 ISBN Medium
Area Expedition Conference
Notes PMID:18980905 Approved no
Call Number Serial 33
Permanent link to this record
 

 
Author Liebermann, D.G.; Berman, S.; Weiss, P.L.T.; Levin, M.F.
Title Kinematics of reaching movements in a 2-d virtual environment in adults with and without stroke Type Journal Article
Year 2012 Publication IEEE Transactions on Neural Systems and Rehabilitation Engineering : a Publication of the IEEE Engineering in Medicine and Biology Society Abbreviated Journal IEEE Trans Neural Syst Rehabil Eng
Volume 20 Issue 6 Pages 778-787
Keywords
Abstract (up) Virtual reality environments are increasingly being used for upper limb rehabilitation in poststroke patients. Our goal was to determine if arm reaching movements made in a 2-D video-capture virtual reality environment are similar to those made in a comparable physical environment. We compared arm and trunk kinematics for reaches made with the right, dominant arm to three targets (14 trials per target) in both environments by 16 adults with right poststroke hemiparesis and by eight healthy age-matched controls. Movement kinematics were recorded with a three-camera optoelectronic system at 100 samples/s. Reaching movements made by both control and stroke subjects were affected by viewing the targets in the video-capture 2-D virtual environment. Movements were slower, shorter, less straight, less accurate and involved smaller ranges of shoulder and elbow joint excursions for target reaches in the virtual environment compared to the physical environment in all subjects. Thus, there was a decrease in the overall movement quality for movements made in the 2-D virtual environment. This suggests that 2-D video-capture virtual reality environments should be used with caution when the goal of the rehabilitation program is to improve the quality of movement patterns of the upper limb.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1534-4320 ISBN Medium
Area Expedition Conference
Notes PMID:22907972 Approved no
Call Number Serial 28
Permanent link to this record