Home | [1–10] << 11 >> |
Records | |||||
---|---|---|---|---|---|
Author | Awasthi, Bhuvanesh; Friedman, Jason; Williams, Mark A | ||||
Title | Reach Trajectories Reveal Delayed Processing of Low Spatial Frequency Faces in Developmental Prosopagnosia | Type | Journal Article | ||
Year | 2012 | Publication | Cognitive Neuroscience | Abbreviated Journal | |
Volume | 3 | Issue | 2 | Pages | 120-130 |
Keywords | |||||
Abstract | Developmental prosopagnosia (DP) is characterized by a selective deficit in face recognition despite normal cognitive and neurological functioning. Previous research has established configural processing deficits in DP subjects. Low spatial frequency (LSF) information subserves configural face processing. Using hybrid stimuli, here we examined the evolution of perceptual dynamics and integration of LSF information by DP subjects while they pointed to high spatial frequency (HSF) face targets. Permutation analysis revealed a 230-ms delay in LSF processing by DP subjects as compared to controls. This delayed processing is likely to contribute to the difficulties associated with face recognition in DP subjects and is reflective of their alleged reliance on local rather than global features in face perception. These results suggest that quick and efficient processing of LSF information is critical for the development of normal face perception. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Penn State @ write.to.jason @ | Serial | 27 | ||
Permanent link to this record | |||||
Author | Raveh, E.; Friedman, J.; Portnoy, S. | ||||
Title | Evaluation of the effects of adding vibrotactile feedback to myoelectric prosthesis users on performance and visual attention in a dual-task paradigm | Type | Journal Article | ||
Year | 2018 | Publication | Clinical Rehabilitation | Abbreviated Journal | Clin Rehabil |
Volume | 99 | Issue | 11 | Pages | 2263-2270 |
Keywords | |||||
Abstract | Objective: To evaluate the effects of adding vibrotactile feedback to myoelectric prosthesis users on the performance time and visual attention in a dual-task paradigm. Design: A repeated-measures design with a counterbalanced order of two conditions. Setting: Laboratory setting. Subjects: Transradial amputees using a myoelectric prosthesis with normal or corrected eyesight (N=12, median age=65 ± 13 years). Exclusion criteria were orthopedic or neurologic problems. Interventions: Subjects performed grasping tasks with their prosthesis, while controlling a virtual car on a road with their intact hand. The dual task was performed twice: with and without vibrotactile feedback. Main measures: Performance time of each of the grasping tasks and gaze behavior, measured by the number of times the subjects shifted their gaze toward their hand, the relative time they applied their attention to the screen, and percentage of error in the secondary task. Results: The mean performance time was significantly shorter (P=0.024) when using vibrotactile feedback (93.2 ± 9.6 seconds) compared with the performance time measured when vibrotactile feedback was not available (107.8 ± 20.3seconds). No significant differences were found between the two conditions in the number of times the gaze shifted from the screen to the hand, in the time the subjects applied their attention to the screen, and in the time the virtual car was off-road, as a percentage of the total game time (51.4 ± 15.7 and 50.2 ± 19.5, respectively). Conclusion: Adding vibrotactile feedback improved performance time during grasping in a dual-task paradigm. Prosthesis users may use vibrotactile feedback to perform better during daily tasks, when multiple cognitive demands are present. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0269-2155 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Penn State @ write.to.jason @ | Serial | 89 | ||
Permanent link to this record | |||||
Author | Portnoy, S.; Mimouni-Bloch, A.; Rosenberg, L.; Offek, H.; Berman, T.; Kochavi, M.; Orman, G.; Friedman, J. | ||||
Title | Graphical Product Quality and Muscle Activity in Children With Mild Disabilities Drawing on a Horizontally or Vertically Oriented Tablet | Type | Journal Article | ||
Year | 2018 | Publication | American Journal of Occupational Therapy | Abbreviated Journal | Am J Occup Ther |
Volume | 72 | Issue | 6 | Pages | 1-7 |
Keywords | |||||
Abstract | OBJECTIVE. We compared performance level and muscle activity patterns during shape copying and tracing in two positions, while sitting at a desk and while standing in front of a wall, between typically developing (TD) preschool children and children with mild disabilities (MD). METHOD. Twenty-two TD children (8 boys, 14 girls; mean [M] age 5 5.2 yr, standard deviation [SD] 5 0.1) and 13 children with MD (9 boys, 4 girls; M age 5 4.9 yr, SD 5 0.5) participated in this study. RESULTS. The children performed faster and smoother movements when copying shapes on the vertical surface, with no reduction of accuracy, than on the horizontal surface. Children with MD exerted their upper trapezius while performing the short tasks on the vertical surface compared with their muscle activity on the horizontal surface. CONCLUSION. Incorporating short copying or drawing tasks on a vertical surface may increase the control of proximal muscles and ease graphomotor performance in children with MD. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0272-9490 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Penn State @ write.to.jason @ | Serial | 91 | ||
Permanent link to this record | |||||
Author | Zacks, O.; Friedman, J. | ||||
Title | Analogies can speed up the motor learning process | Type | Journal Article | ||
Year | 2020 | Publication | Scientific Reports | Abbreviated Journal | Sci Rep |
Volume | 10 | Issue | 1 | Pages | 6932 |
Keywords | |||||
Abstract | Analogies have been shown to improve motor learning in various tasks and settings. In this study we tested whether applying analogies can shorten the motor learning process and induce insight and skill improvement in tasks that usually demand many hours of practice. Kinematic measures were used to quantify participant's skill and learning dynamics. For this purpose, we used a drawing task, in which subjects drew lines to connect dots, and a mirror game, in which subjects tracked a moving stimulus. After establishing a baseline, subjects were given an analogy, explicit instructions or no further instruction. We compared their improvement in skill (quantified by coarticulation or smoothness), accuracy and movement duration. Subjects in the analogy and explicit groups improved their coarticulation in the target task, while significant differences were found in the mirror game only at a slow movement frequency between analogy and controls.We conclude that a verbal analogy can be a useful tool for rapidly changing motor kinematics and movement strategy in some circumstances, although in the tasks selected it did not produce better performance in most measurements than explicit guidance. Furthermore, we observed that different movement facets may improve independently from others, and may be selectively affected by verbal instructions. These results suggest an important role for the type of instruction in motor learning. | ||||
Address | Dept. of Physical Therapy, Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel | ||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 2045-2322 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | PMID:32332826; PMCID:PMC7181737 | Approved | no | ||
Call Number | Penn State @ write.to.jason @ | Serial | 105 | ||
Permanent link to this record | |||||
Author | Shaklai, S.; Mimouni-Bloch, A.; Levin, M.; Friedman, J. | ||||
Title | Development of finger force coordination in children | Type | Journal Article | ||
Year | 2017 | Publication | Experimental Brain Research | Abbreviated Journal | |
Volume | 235 | Issue | 12 | Pages | 3709–3720 |
Keywords | |||||
Abstract | Coordination is often observed as body parts moving together. However, when producing force with multiple fingers, the optimal coordination is not to produce similar forces with each finger, but rather for each finger to correct mistakes of other fingers. In this study, we aim to determine whether and how this skill develops in children aged 4-12 years. We measured this sort of coordination using the uncontrolled manifold hypothesis (UCM). We recorded finger forces produced by 60 typically developing children aged between 4 and 12 years in a finger-pressing task. The children controlled the height of an object on a screen by the total amount of force they produced on force sensors. We found that the synergy index, a measure of the relationship between “good” and “bad” variance, increased linearly as a function of age. This improvement was achieved by a selective reduction in “bad” variance rather than an increase in “good” variance. We did not observe differences between males and females, and the synergy index was not able to predict outcomes of upper limb behavioral tests after controlling for age. As children develop between the ages of 4 and 12 years, their ability to produce negative covariation between their finger forces improves, likely related to their improved ability to perform dexterous tasks. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 1432-1106 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Shaklai2017 | Serial | 86 | ||
Permanent link to this record |