|   | 
Details
   web
Records
Author Lerner, O.; Friedman, J.; Frenkel-Toledo, S.
Title The effect of high-definition transcranial direct current stimulation intensity on motor performance in healthy adults: a randomized controlled trial Type Journal Article
Year 2021 Publication Journal of NeuroEngineering and Rehabilitation Abbreviated Journal J NeuroEngineering Rehabil
Volume 18 Issue Pages (down) 103
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1743-0003 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 109
Permanent link to this record
 

 
Author Kapur, Shweta; Friedman, Jason; Zatsiorsky, Vladimir M.; Latash, Mark L.
Title Finger interaction in a three-dimensional pressing task Type Journal Article
Year 2010 Publication Experimental Brain Research Abbreviated Journal
Volume 203 Issue 1 Pages (down) 101-118
Keywords
Abstract Accurate control of forces produced by the fingers is essential for performing object manipulation. This study examines the indices of finger interaction when accurate time profiles of force are produced in different directions, while using one of the fingers or all four fingers of the hand. We hypothesized that patterns of unintended force production among shear force components may involve features not observed in the earlier studies of vertical force production. In particular, we expected to see unintended forces generated by non-task fingers not in the

direction on the instructed force but in the opposite direction as well as substantial force production in directions orthogonal to the instructed direction. We also tested a hypothesis that multi-finger synergies, quantified using the framework of the uncontrolled manifold hypothesis, will help reduce across-trials variance of both total force magnitude and direction. Young, healthy subjects were required to produce accurate ramps of force in five different directions by

pressing on force sensors with the fingers of the right (dominant) hand. The index finger induced the smallest unintended forces in non-task fingers. The little finger showed the smallest unintended forces when it was a non-task finger. Task fingers showed substantial force production in directions orthogonal to the intended force direction. During four-finger tasks, individual force vectors typically pointed off the task direction, with these deviations nearly

perfectly matched to produce a resultant force in the task direction. Multi-finger synergy indices reflected strong co-variation in the space of finger modes (commands to fingers) that reduced variability of the total force magnitude and direction across trials. The synergy indices increased in magnitude over the first 30% of the trial time and then stayed at a nearly constant level. The synergy index for stabilization of total force magnitude was higher for shear force components as compared to the downward pressing force component. The results suggest complex interactions between enslaving and synergic force adjustments, possibly reflecting the experience with everyday prehensile tasks. For the first time, the data document multi-finger synergies stabilizing both shear force magnitude and force vector direction. These synergies may play a major role in

stabilizing the hand action during object manipulation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes in press Approved no
Call Number Penn State @ write.to.jason @ Serial 20
Permanent link to this record
 

 
Author Bezalel, G.; Nachoum Arad, G.; Plotnik, M.; Friedman, J.
Title Voluntary step execution in patients with knee osteoarthritis: Symptomatic vs. non-symptomatic legs Type Journal Article
Year 2021 Publication Gait & Posture Abbreviated Journal Gait Posture
Volume 83 Issue Pages (down) 60-66
Keywords Accidental falls; Gait; Knee; Osteoarthritis; Voluntary step
Abstract BACKGROUND: Individuals with osteoarthritis fall at a greater rate than the general population, likely as a result of weakness, pain, movement limitations, and a decline in balance. Due to the high prevalence of osteoarthritis in the population, understanding the mechanisms leading to greater fall risk is an important issue to better understand. RESEARCH QUESTION: What is the influence of unilateral knee osteoarthritis on the characteristics of performing a voluntary step (i.e., similar to that performed to avoid a fall after a perturbation), compared to healthy age-matched controls? METHODS: Case-control study performed in a Health maintenance organization physical therapy clinic. The research group consisted of a referred sample of 21 patients with unilateral knee osteoarthritis. The control group consisted of 22 age-matched healthy individuals. All participants were over 65 years of age. Participants were excluded if they had a surgical procedure to back or lower limb within one year before testing, oncological or neurological disease or a deficit in tactile sense. Movements were performed with and without dual tasking. MEASUREMENTS: Duration of the initiation phase (cue to step initiation), preparatory phase (step initiation to foot off) and swing phase (foot off to foot contact). RESULTS: In the preparatory phase and swing phase, the osteoarthritis group moved more slowly than the control group, and these differences were larger for forward compared to backward movements. Dual-tasking slowed responses in the pre-movement initiation stage across groups. SIGNIFICANCE: The differences in basic parameters, and the slower movements in the osteoarthritis group, are consistent with known features of osteoarthritis, being a disease commonly regarded as primarily “mechanical”, and are likely to increase fall risk. These response deficits suggest we should take advantage of advanced rehabilitation techniques, including cognitive loading, to help prevent falls in older adults with osteoarthritis.
Address Dept. Physical Therapy, Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel. Electronic address: jason@tau.ac.il
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0966-6362 ISBN Medium
Area Expedition Conference
Notes PMID:33080457 Approved no
Call Number Serial 107
Permanent link to this record
 

 
Author Nahab, Fatta; Kundu, Prantik; Gallea, Cecile; Kakareka, John; Pursley, Randy; Pohida, Tom; Miletta, Nathaniel; Friedman, Jason; Hallett, Mark
Title The neural processes underlying self-agency Type Journal Article
Year 2011 Publication Cerebral Cortex Abbreviated Journal
Volume 21 Issue 1 Pages (down) 48-55
Keywords
Abstract Self-agency (SA) is the individual’s perception that an action is the consequence of his/her own intention. The neural networks underlying SA are not well understood. We carried out a novel, ecologically valid, virtual-reality experiment using BOLD-fMRI where SA could be modulated in real-time while subjects performed voluntary finger movements. Behavioral testing was also performed to assess the explicit judgment of SA. Twenty healthy volunteers completed the experiment. Results of the behavioral testing demonstrated paradigm validity along with the identification of a bias that led subjects to over- or underestimate the amount of control they had. The fMRI experiment identified two discrete networks. These leading and lagging networks likely represent a spatial and temporal flow of information, with the leading network serving the role of mismatch detection and the lagging network receiving this information and

mediating its elevation to conscious awareness, giving rise to SA.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Penn State @ write.to.jason @ Serial 21
Permanent link to this record
 

 
Author Raveh, E.; Portnoy, S.; Friedman, J.
Title Adding vibrotactile feedback to a myoelectric-controlled hand improves performance when online visual feedback is disturbed Type Journal Article
Year 2018 Publication Human Movement Science Abbreviated Journal Hum Mov Sci
Volume 58 Issue Pages (down) 32-40
Keywords Myoelectric prostheses; Sensorimotor control; Upper limb amputation; Visual feedback
Abstract We investigated whether adding vibrotactile feedback to a myoelectric-controlled hand, when visual feedback is disturbed, can improve performance during a functional test. For this purpose, able-bodied subjects, activating a myoelectric-controlled hand attached to their right hand performed the modified Box & Blocks test, grasping and manipulating wooden blocks over a partition. This was performed in 3 conditions, using a repeated-measures design: in full light, in a dark room where visual feedback was disturbed and no auditory feedback – one time with the addition of tactile feedback provided during object grasping and manipulation, and one time without any tactile feedback. The average time needed to transfer one block was measured, and an infrared camera was used to give information on the number of grasping errors during performance of the test. Our results show that when vibrotactile feedback was provided, performance time was reduced significantly, compared with when no vibrotactile feedback was available. Furthermore, the accuracy of grasping and manipulation was improved, reflected by significantly fewer errors during test performance. In conclusion, adding vibrotactile feedback to a myoelectric-controlled hand has positive effects on functional performance when visual feedback is disturbed. This may have applications to current myoelectric-controlled hands, as adding tactile feedback may help prosthesis users to improve their functional ability during daily life activities in different environments, particularly when limited visual feedback is available or desirable.
Address Physical Therapy Department, Sackler Faculty of Medicine, Tel Aviv University, Israel. Electronic address: jason@post.tau.ac.il
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-9457 ISBN Medium
Area Expedition Conference
Notes PMID:29353091 Approved no
Call Number Serial 88
Permanent link to this record