|   | 
Details
   web
Records
Author Cantergi, D.; Awasthi, B.; Friedman, J.
Title Moving objects by imagination? Amount of finger movement and pendulum length determine success in the Chevreul pendulum illusion Type Journal Article
Year 2021 Publication Human Movement Science Abbreviated Journal Human Movement Science
Volume 80 Issue Pages 102879
Keywords (up)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-9457 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 111
Permanent link to this record
 

 
Author Swissa, Y.; Hacohen, S.; Friedman, J.; Frenkel-Toledo, S.
Title Sensorimotor performance after high-definition transcranial direct current stimulation over the primary somatosensory or motor cortices in men versus women Type Journal Article
Year 2022 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 12 Issue Pages 11117
Keywords (up)
Abstract The primary somatosensory (S1) cortex is a central structure in motor performance. However, transcranial direct current stimulation (tDCS) research aimed at improving motor performance usually targets the primary motor cortex (M1). Recently, sex was found to mediate tDCS response. Thus, we investigated whether tDCS with an anodal electrode placed over S1 improves motor performance and sensation perception in men versus women. Forty-five participants randomly received 15-min high-definition tDCS (HD-tDCS) at 1 mA to S1, M1, or sham stimulation. Reaching performance was tested before and immediately following stimulation. Two-point orientation discrimination (TPOD) of fingers and proprioception of a reaching movement were also tested. Although motor performance did not differ between groups, reaching reaction time improved in the M1 group men. Reaching movement time and endpoint error improved in women and men, respectively. Correct trials percentage for TPOD task was higher in the S1 compared to the M1 group in the posttest and improved only in the S1 group. Reaching movement time for the proprioception task improved, overall, and endpoint error did not change. Despite the reciprocal connections between S1 and M1, effects of active tDCS over S1 and M1 may specifically influence sensation perception and motor performance, respectively. Also, sex may mediate effects of HD-tDCS on motor performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 114
Permanent link to this record
 

 
Author Thorpe, A.; Friedman, J.; Evans, S.; Nesbitt, K.; Eidels, A.
Title Mouse Movement Trajectories as an Indicator of Cognitive Workload Type Journal Article
Year 2022 Publication International Journal of Human-Computer Interaction Abbreviated Journal International Journal of Human-Computer Interaction
Volume 38 Issue 15 Pages 1464-1479
Keywords (up)
Abstract Assessing the cognitive impact of user interfaces is a shared focus of human-computer interaction researchers and cognitive scientists. Methods of cognitive assessment based on data derived from the system itself, rather than external apparatus, have the potential to be applied in a range of scenarios. The current study applied methods of analyzing kinematics to mouse movements in a computer-based task, alongside the detection response task, a standard workload measure. Sixty-five participants completed a task in which stationary stimuli were tar;geted using a mouse, with a within-subjects factor of task workload based on the number of targets to be hovered over with the mouse (one/two), and a between-subjects factor based on whether both targets (exhaustive) or just one target (minimum-time) needed to be hovered over to complete a trial when two targets were presented. Mouse movement onset times were slower and mouse movement trajectories exhibited more submovements when two targets were presented, than when one target was presented. Responses to the detection response task were also slower in this condition, indicating higher cognitive workload. However, these differences were only found for participants in the exhaustive condition, suggesting those in the minimum-time condition were not affected by the presence of the second target. Mouse movement trajectory results agreed with other measures of workload and task performance. Our findings suggest this analysis can be applied to workload assessments in real-world scenarios.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-7318 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 117
Permanent link to this record
 

 
Author Mimouni-Bloch, A.; Shaklai, S.; Levin, M.; Ingber, M.; Karolitsky, T.; Grunbaum, S.; Friedman, J.
Title Developmental and acquired brain injury have opposite effects on finger coordination in children Type Journal Article
Year 2023 Publication Frontiers in Human Neuroscience Abbreviated Journal Front. Hum. Neurosci.
Volume 17 Issue Pages 1083304
Keywords (up)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1662-5161 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 119
Permanent link to this record
 

 
Author Bezalel, G.; Nachoum Arad, G.; Plotnik, M.; Friedman, J.
Title Voluntary step execution in patients with knee osteoarthritis: Symptomatic vs. non-symptomatic legs Type Journal Article
Year 2021 Publication Gait & Posture Abbreviated Journal Gait Posture
Volume 83 Issue Pages 60-66
Keywords (up) Accidental falls; Gait; Knee; Osteoarthritis; Voluntary step
Abstract BACKGROUND: Individuals with osteoarthritis fall at a greater rate than the general population, likely as a result of weakness, pain, movement limitations, and a decline in balance. Due to the high prevalence of osteoarthritis in the population, understanding the mechanisms leading to greater fall risk is an important issue to better understand. RESEARCH QUESTION: What is the influence of unilateral knee osteoarthritis on the characteristics of performing a voluntary step (i.e., similar to that performed to avoid a fall after a perturbation), compared to healthy age-matched controls? METHODS: Case-control study performed in a Health maintenance organization physical therapy clinic. The research group consisted of a referred sample of 21 patients with unilateral knee osteoarthritis. The control group consisted of 22 age-matched healthy individuals. All participants were over 65 years of age. Participants were excluded if they had a surgical procedure to back or lower limb within one year before testing, oncological or neurological disease or a deficit in tactile sense. Movements were performed with and without dual tasking. MEASUREMENTS: Duration of the initiation phase (cue to step initiation), preparatory phase (step initiation to foot off) and swing phase (foot off to foot contact). RESULTS: In the preparatory phase and swing phase, the osteoarthritis group moved more slowly than the control group, and these differences were larger for forward compared to backward movements. Dual-tasking slowed responses in the pre-movement initiation stage across groups. SIGNIFICANCE: The differences in basic parameters, and the slower movements in the osteoarthritis group, are consistent with known features of osteoarthritis, being a disease commonly regarded as primarily “mechanical”, and are likely to increase fall risk. These response deficits suggest we should take advantage of advanced rehabilitation techniques, including cognitive loading, to help prevent falls in older adults with osteoarthritis.
Address Dept. Physical Therapy, Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel. Electronic address: jason@tau.ac.il
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0966-6362 ISBN Medium
Area Expedition Conference
Notes PMID:33080457 Approved no
Call Number Serial 107
Permanent link to this record