|   | 
Details
   web
Records
Author Friedman, J.; Amiaz, A.; Korman, M.
Title The online and offline effects of changing movement timing variability during training on a finger-opposition task Type Journal Article
Year 2022 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 12 Issue 1 Pages 13319
Keywords Fingers; Humans; *Learning; *Motor Skills; Movement; Psychomotor Performance; Upper Extremity
Abstract (down) In motor learning tasks, there is mixed evidence for whether increased task-relevant variability in early learning stages leads to improved outcomes. One problem is that there may be a connection between skill level and motor variability, such that participants who initially have more variability may also perform worse on the task, so will have more room to improve. To avoid this confound, we experimentally manipulated the amount of movement timing variability (MTV) during training to test whether it improves performance. Based on previous studies showing that most of the improvement in finger-opposition tasks comes from optimizing the relative onset time of the finger movements, we used auditory cues (beeps) to guide the onset times of sequential movements during a training session, and then assessed motor performance after the intervention. Participants were assigned to three groups that either: (a) followed a prescribed random rhythm for their finger touches (Variable MTV), (b) followed a fixed rhythm (Fixed control MTV), or (c) produced the entire sequence following a single beep (Unsupervised control MTV). While the intervention was successful in increasing MTV during training for the Variable group, it did not lead to improved outcomes post-training compared to either control group, and the use of fixed timing led to significantly worse performance compared to the Unsupervised control group. These results suggest that manipulating MTV through auditory cues does not produce greater learning than unconstrained training in motor sequence tasks.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:35922460; PMCID:PMC9349301 Approved no
Call Number Serial 115
Permanent link to this record
 

 
Author Shaklai, S.; Mimouni-Bloch, A.; Levin, M.; Friedman, J.
Title Development of finger force coordination in children Type Journal Article
Year 2017 Publication Experimental Brain Research Abbreviated Journal
Volume 235 Issue 12 Pages 3709–3720
Keywords
Abstract (down) Coordination is often observed as body parts moving together. However, when producing force with multiple fingers, the optimal coordination is not to produce similar forces with each finger, but rather for each finger to correct mistakes of other fingers. In this study, we aim to determine whether and how this skill develops in children aged 4-12 years. We measured this sort of coordination using the uncontrolled manifold hypothesis (UCM). We recorded finger forces produced by 60 typically developing children aged between 4 and 12 years in a finger-pressing task. The children controlled the height of an object on a screen by the total amount of force they produced on force sensors. We found that the synergy index, a measure of the relationship between “good” and “bad” variance, increased linearly as a function of age. This improvement was achieved by a selective reduction in “bad” variance rather than an increase in “good” variance. We did not observe differences between males and females, and the synergy index was not able to predict outcomes of upper limb behavioral tests after controlling for age. As children develop between the ages of 4 and 12 years, their ability to produce negative covariation between their finger forces improves, likely related to their improved ability to perform dexterous tasks.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1432-1106 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Shaklai2017 Serial 86
Permanent link to this record
 

 
Author Kaufman-Cohen, Y.; Portnoy, S.; Levanon, Y.; Friedman, J.
Title Does Object Height Affect the Dart Throwing Motion Angle during Seated Activities of Daily Living? Type Journal Article
Year 2019 Publication Journal of Motor Behavior Abbreviated Journal J Mot Behav
Volume Issue Pages 1-10
Keywords dart throwing motion (DTM); heights; kinematics; seated activities of daily living (ADL); upper extremity; wrist rehabilitation
Abstract (down) Complex wrist motions are needed to complete various daily activities. Analyzing the multidimensional motion of the wrist is crucial for understanding our functional movement. Several studies have shown that numerous activities of daily livings (ADLs) are performed using an oblique plane of wrist motion from radial-extension to ulnar-flexion, named the Dart Throwing Motion (DTM) plane. To the best of our knowledge, the DTM plane angle performed during ADLs has not been compared between different heights (e.g. table, shoulder and head height), as is common when performing day-to-day tasks. In this study, we compared DTM plane angles when performing different ADLs at three different heights and examined the relationship between DTM plane angles and limb position. We found that height had a significant effect on the DTM plane angles – the mean DTM plane angle was greater at the lower level compared to the mid and higher levels. A significant effect of shoulder orientation on mean DTM plane angles was shown in the sagittal and coronal planes. Our findings support the importance of training daily tasks at different heights during rehabilitation following wrist injuries, in order to explore a large range of DTM angles, to accommodate needs of common ADLs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2895 ISBN Medium
Area Expedition Conference
Notes PMID:31359843 Approved no
Call Number Serial 100
Permanent link to this record
 

 
Author Krasovsky, T.; Weiss, P.L.; Zuckerman, O.; Bar, A.; Keren-Capelovitch, T.; Friedman, J.
Title DataSpoon: Validation of an Instrumented Spoon for Assessment of Self-Feeding Type Journal Article
Year 2020 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)
Volume 20 Issue 7 Pages
Keywords concurrent validity; feasibility; kinematics; outcome assessment; rehabilitation
Abstract (down) Clinically feasible assessment of self-feeding is important for adults and children with motor impairments such as stroke or cerebral palsy. However, no validated assessment tool for self-feeding kinematics exists. This work presents an initial validation of an instrumented spoon (DataSpoon) developed as an evaluation tool for self-feeding kinematics. Ten young, healthy adults (three male; age 27.2 +/- 6.6 years) used DataSpoon at three movement speeds (slow, comfortable, fast) and with three different grips: “natural”, power and rotated power grip. Movement kinematics were recorded concurrently using DataSpoon and a magnetic motion capture system (trakSTAR). Eating events were automatically identified for both systems and kinematic measures were extracted from yaw, pitch and roll (YPR) data as well as from acceleration and tangential velocity profiles. Two-way, mixed model Intraclass correlation coefficients (ICC) and 95% limits of agreement (LOA) were computed to determine agreement between the systems for each kinematic variable. Most variables demonstrated fair to excellent agreement. Agreement for measures of duration, pitch and roll exceeded 0.8 (excellent agreement) for >80% of speed and grip conditions, whereas lower agreement (ICC < 0.46) was measured for tangential velocity and acceleration. A bias of 0.01-0.07 s (95% LOA [-0.54, 0.53] to [-0.63, 0.48]) was calculated for measures of duration. DataSpoon enables automatic detection of self-feeding using simple, affordable movement sensors. Using movement kinematics, variables associated with self-feeding can be identified and aid clinical reasoning for adults and children with motor impairments.
Address Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes PMID:32283624; PMCID:PMC7180859 Approved no
Call Number Serial 104
Permanent link to this record
 

 
Author Steinhart, S.; Weiss, P.L.; Friedman, J.
Title Proximal and distal movement patterns during a graphomotor task in typically developing children and children with handwriting problems Type Journal Article
Year 2021 Publication Journal of Neuroengineering and Rehabilitation Abbreviated Journal J Neuroeng Rehabil
Volume 18 Issue 1 Pages 178
Keywords Arm; Biomechanical Phenomena; Child; *Handwriting; Humans; Motor Skills; *Movement; Upper Extremity; Distal joints; Handwriting; Motor control; Movement analysis; Proximal; Stability
Abstract (down) BACKGROUND: Therapists specializing in handwriting difficulties in children often address motor problems including both proximal and distal movements in the upper extremity. Kinematic measures can be used to investigate various aspects of handwriting. This study examined differences in movement patterns in proximal and distal joints of the upper extremity during graphomotor tasks between typically developing children with and without handwriting problems. Additionally, it explored relationships between movement patterns, speed, and legibility of writing. METHODS: Forty-one children, aged 7-11 years, were assessed with the Aleph Aleph Ktav Yad Hebrew Handwriting assessment and the Beery Test of Visual Motor Integration and, based on their scores, were divided into a research group (with handwriting difficulties) and a control group (without handwriting difficulties). Upper extremity joint movement patterns were analyzed with a motion capture system. Differences in the quality of shapes traced and copied on a graphics tablet positioned horizontally and vertically were compared. Between-group differences and relationships with speed and legibility were analyzed. RESULTS: In both groups, there was greater movement in the distal compared to the proximal joints, greater movement when performing the task in a horizontal compared to a vertical plane, and greater movement when tracing than copying. Joint movements in the arm executed scaled-down versions of the shapes being drawn. While the amount of joint displacement was similar between groups, children in the research group showed greater dissimilarity between the drawn shape and the shape produced by the proximal joints. Finally, the drawing measure on the tablet was a significant predictor of legibility, speed of writing, visual motor integration and motor coordination, whereas the dissimilarity measure of joint movement was a significant predictor of speed of writing and motor coordination. CONCLUSIONS: This study provides support for the role of the distal upper extremity joints in the writing process and some guidance to assist clinicians in devising treatment strategies for movement-related handwriting problems. While we observed differences in proximal joint movements between the children with and without handwriting difficulties, the extent to which they are responsible for the differences in drawing quality remains to be determined. Further studies should use a similar methodology to examine additional tasks such as drawing shapes of varying sizes.
Address Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel. jason@tau.ac.il
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1743-0003 ISBN Medium
Area Expedition Conference
Notes PMID:34930334; PMCID:PMC8690895 Approved no
Call Number Serial 118
Permanent link to this record