Records |
Author |
Friedman, J.; Korman, M. |
Title |
Observation of an expert model induces a skilled movement coordination pattern in a single session of intermittent practice |
Type |
Journal Article |
Year |
2019 |
Publication |
Scientific Reports |
Abbreviated Journal |
Sci Rep |
Volume |
9 |
Issue |
1 |
Pages |
4609 |
Keywords |
|
Abstract |
We tested how observation of a skilled pattern of planar movements can assist in the learning of a new motor skill, which otherwise requires rigorous long-term practice to achieve fast and smooth performance. Sixty participants performed a sequence of planar hand movements on pre-test, acquisition, post-test and 24 h post-training blocks, under 1 of 4 conditions: an observation group (OG), a slowed observation group (SOG), a random motion control group (RMCG) and a double physical training control group (DPTCG). The OG and SOG observed an expert model's right hand performing the study task intermittently throughout acquisition, RMCG observed random dots movement instead of a model. Participants in the DPTCG received extra physical practice trials instead of the visually observed trials. Kinematic analysis revealed that only in conditions with observation of an expert model there was an instant robust improvement in motor planning of the task. This step-wise improvement was not only persistent in post-training retests but was also apparently implicit and subject to further incremental improvements in movement strategy over the period of 24 hours. The rapid change in motor strategy was accompanied by a transient within-session increase in spatial error for the observation groups, but this went away by 24 h post-training. We suggest that observation of hand movements of an expert model coaligned with self-produced movements during training can significantly condense the time-course of ecologically relevant drawing/writing skill mastery. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2045-2322 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:30872661 |
Approved |
no |
Call Number |
|
Serial |
94 |
Permanent link to this record |
|
|
|
Author |
Latash, M.L., Friedman, J., Kim, S.W., Feldman, A.G., Zatsiorsky, V.M. |
Title |
Prehension Synergies and Control with Referent Hand Configurations |
Type |
Journal Article |
Year |
2010 |
Publication |
Experimental Brain Research |
Abbreviated Journal |
Exp Brain Res |
Volume |
202 |
Issue |
1 |
Pages |
213-229 |
Keywords |
|
Abstract |
We used the framework of the equilibrium-point hypothesis (in its updated form based on the notion of referent configuration) to investigate the multi-digit synergies at two levels of a hypothetical hierarchy involved in prehensile actions. Synergies were analyzed at the thumb-virtual finger level (virtual finger is an imaginary digit with the mechanical action equivalent to that of the four actual fingers) and at the individual finger level. The subjects performed very quick vertical movements of a handle into a target. A load could be attached off-center to provide a pronation or supination torque. In a few trials, the handle was unexpectedly fixed to the table and the digits slipped off the sensors. In such trials, the hand stopped at a higher vertical position and rotated into pronation or supination depending on the expected torque. The aperture showed non-monotonic changes with a large, fast decrease and further increase, ending up with a smaller distance between the thumb and the fingers as compared to unperturbed trials. Multi-digit synergies were quantified using indices of co-variation between digit forces and moments of force across unperturbed trials. Prior to the lifting action, high synergy indices were observed at the individual finger level while modest indices were observed at the thumb-virtual finger level. During the lifting action, the synergies at the individual finger level disappeared while the synergy indices became higher at the thumb-virtual finger level. The results support the basic premise that, within a given task, setting a referent configuration may be described with a few referent values of variables that influence the equilibrium state, to which the system is attracted. Moreover, the referent configuration hypothesis can help interpret the data related to the trade-off between synergies at different hierarchical levels. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
Penn State @ write.to.jason @ |
Serial |
19 |
Permanent link to this record |