|   | 
Details
   web

Warning: Undefined array key "typeVideo-Audio Media" in /home/public/search.php on line 1322
Records
Author Kaufman-Cohen, Y.; Portnoy, S.; Levanon, Y.; Friedman, J.
Title Does Object Height Affect the Dart Throwing Motion Angle during Seated Activities of Daily Living? Type Journal Article
Year 2019 Publication Journal of Motor Behavior Abbreviated Journal J Mot Behav
Volume Issue Pages 1-10
Keywords dart throwing motion (DTM); heights; kinematics; seated activities of daily living (ADL); upper extremity; wrist rehabilitation
Abstract Complex wrist motions are needed to complete various daily activities. Analyzing the multidimensional motion of the wrist is crucial for understanding our functional movement. Several studies have shown that numerous activities of daily livings (ADLs) are performed using an oblique plane of wrist motion from radial-extension to ulnar-flexion, named the Dart Throwing Motion (DTM) plane. To the best of our knowledge, the DTM plane angle performed during ADLs has not been compared between different heights (e.g. table, shoulder and head height), as is common when performing day-to-day tasks. In this study, we compared DTM plane angles when performing different ADLs at three different heights and examined the relationship between DTM plane angles and limb position. We found that height had a significant effect on the DTM plane angles – the mean DTM plane angle was greater at the lower level compared to the mid and higher levels. A significant effect of shoulder orientation on mean DTM plane angles was shown in the sagittal and coronal planes. Our findings support the importance of training daily tasks at different heights during rehabilitation following wrist injuries, in order to explore a large range of DTM angles, to accommodate needs of common ADLs.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2895 ISBN Medium
Area Expedition Conference
Notes PMID:31359843 Approved no
Call Number Serial 100
Permanent link to this record
 

 
Author Friedman, J.; Raveh, E.; Weiss, T.; Itkin, S.; Niv, D.; Hani, M.; Portnoy, S.
Title Applying Incongruent Visual-Tactile Stimuli during Object Transfer with Vibro-Tactile Feedback Type
Year 2019 Publication Journal of Visualized Experiments : JoVE Abbreviated Journal J Vis Exp
Volume 147 Issue Pages e59493
Keywords
Abstract The application of incongruent sensory signals that involves disrupted tactile feedback is rarely explored, specifically with the presence of vibrotactile feedback (VTF). This protocol aims to test the effect of VTF on the response to incongruent visual-tactile stimuli. The tactile feedback is acquired by grasping a block and moving it across a partition. The visual feedback is a real-time virtual presentation of the moving block, acquired using a motion capture system. The congruent feedback is the reliable presentation of the movement of the block, so that the subject feels that the block is grasped and see it move along with the path of the hand. The incongruent feedback appears as the movement of the block diverts from the actual movement path, so that it seems to drop from the hand when it is actually still held by the subject, thereby contradicting the tactile feedback. Twenty subjects (age 30.2 +/- 16.3) repeated 16 block transfers, while their hand was hidden. These were repeated with VTF and without VTF (total of 32 block transfers). Incongruent stimuli were presented randomly twice within the 16 repetitions in each condition (with and without VTF). Each subject was asked to rate the difficulty level of performing the task with and without the VTF. There were no statistically significant differences in the length of the hand paths and durations between transfers recorded with congruent and incongruent visual-tactile signals – with and without the VTF. The perceived difficulty level of performing the task with the VTF significantly correlated with the normalized path length of the block with VTF (r = 0.675, p = 0.002). This setup is used to quantify the additive or reductive value of VTF during motor function that involves incongruent visual-tactile stimuli. Possible applications are prosthetics design, smart sport-wear, or any other garments that incorporate VTF.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1940-087X ISBN Medium
Area Expedition Conference
Notes PMID:31180348 Approved no
Call Number Serial 101
Permanent link to this record
 

 
Author Kaufman-Cohen, Y.; Levanon, Y.; Friedman, J.; Yaniv, Y.; Portnoy, S.
Title Home exercise in the dart-throwing motion plane after distal radius fractures: A Pilot Randomized Controlled Trial Type Journal Article
Year 2020 Publication Journal of Hand Therapy Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 103
Permanent link to this record
 

 
Author Lerner, O.; Friedman, J.; Frenkel-Toledo, S.
Title The effect of high-definition transcranial direct current stimulation intensity on motor performance in healthy adults: a randomized controlled trial Type Journal Article
Year 2021 Publication Journal of NeuroEngineering and Rehabilitation Abbreviated Journal J NeuroEngineering Rehabil
Volume 18 Issue Pages 103
Keywords
Abstract
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1743-0003 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 109
Permanent link to this record
 

 
Author Krasovsky, T.; Keren-Capelovitch, T.; Friedman, J.; Weiss, P.L.
Title Self-feeding kinematics in an ecological setting: typically developing children and children with cerebral palsy Type Journal Article
Year 2021 Publication IEEE Transactions on Neural Systems and Rehabilitation Engineering : a Publication of the IEEE Engineering in Medicine and Biology Society Abbreviated Journal IEEE Trans Neural Syst Rehabil Eng
Volume 29 Issue Pages 1462-1469
Keywords
Abstract Assessment of self-feeding kinematics is seldom performed in an ecological setting. In preparation for development of an instrumented spoon for measurement of self-feeding in children with cerebral palsy (CP), the current work aimed to evaluate upper extremity kinematics of self-feeding in young children with typical development (TD) and a small, age-matched group of children with CP in a familiar setting, while eating with a spoon. METHODS: Sixty-five TD participants and six children diagnosed with spastic CP, aged 3-9 years, fed themselves while feeding was measured using miniature three-dimensional motion capture sensors (trakStar). Kinematic variables associated with different phases of self-feeding cycle (movement time, curvature, time to peak velocity and smoothness) were compared across age-groups in the TD sample and between TD children and those with CP. RESULTS: Significant between-age group differences were identified in movement times, time to peak velocity and curvature. Children with CP demonstrated slower, less smooth self-feeding movements, potentially related to activity limitations. CONCLUSIONS: The identified kinematic variables form a basis for implementation of self-feeding performance assessment in children of different ages, including those with CP, which can be deployed via an instrumented spoon.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1534-4320 ISBN Medium
Area Expedition Conference
Notes PMID:34280104 Approved no
Call Number Serial 110
Permanent link to this record