|   | 
Details
   web
Records
Author (up) Liebermann, D.G.; Biess, A.; Friedman, J.; Gielen, C.C.A.M.; Flash, T.
Title Intrinsic joint kinematic planning. I: reassessing the Listing's law constraint in the control of three-dimensional arm movements Type Journal Article
Year 2006 Publication Experimental Brain Research Abbreviated Journal Exp Brain Res
Volume 171 Issue 2 Pages 139-154
Keywords Adolescent; Adult; Analysis of Variance; *Arm; Biomechanics; Eye Movements/*physiology; Humans; Joints/*physiology; Male; Movement/*physiology; *Musculoskeletal System; Orientation/*physiology; Posture
Abstract This study tested the validity of the assumption that intrinsic kinematic constraints, such as Listing's law, can account for the geometric features of three-dimensional arm movements. In principle, if the arm joints follow a Listing's constraint, the hand paths may be predicted. Four individuals performed 'extended arm', 'radial', 'frontal plane', and 'random mixed' movements to visual targets to test Listing's law assumption. Three-dimensional rotation vectors of the upper arm and forearm were calculated from three-dimensional marker data. Data fitting techniques were used to test Donders' and Listing's laws. The coefficient values obtained from fitting rotation vectors to the surfaces described by a second-order equation were analyzed. The results showed that the coefficients that represent curvature and twist of the surfaces were often not significantly different from zero, particularly not during randomly mixed and extended arm movements. These coefficients for forearm rotations were larger compared to those for the upper arm segment rotations. The mean thickness of the rotation surfaces ranged between approximately 1.7 degrees and 4.7 degrees for the rotation vectors of the upper arm segment and approximately 2.6 degrees and 7.5 degrees for those of the forearm. During frontal plane movements, forearm rotations showed large twist scores while upper arm segment rotations showed large curvatures, although the thickness of the surfaces remained low. The curvatures, but not the thicknesses of the surfaces, were larger for large versus small amplitude radial movements. In conclusion, when examining the surfaces obtained for the different movement types, the rotation vectors may lie within manifolds that are anywhere between curved or twisted manifolds. However, a two-dimensional thick surface may roughly represent a global arm constraint. Our findings suggest that Listing's law is implemented for some types of arm movement, such as pointing to targets with the extended arm and during radial reaching movements.
Address Department of Physical Therapy, Sackler Faculty of Medicine, Tel-Aviv University, 69978, Ramat Aviv, Israel. dlieberm@post.tau.ac.il
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0014-4819 ISBN Medium
Area Expedition Conference
Notes PMID:16341526 Approved no
Call Number Penn State @ write.to.jason @ Serial 18
Permanent link to this record
 

 
Author (up) Mimouni-Bloch, A.; Shaklai, S.; Levin, M.; Ingber, M.; Karolitsky, T.; Grunbaum, S.; Friedman, J.
Title Developmental and acquired brain injury have opposite effects on finger coordination in children Type Journal Article
Year 2023 Publication Frontiers in Human Neuroscience Abbreviated Journal Front. Hum. Neurosci.
Volume 17 Issue Pages 1083304
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1662-5161 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 119
Permanent link to this record
 

 
Author (up) Noy, L.; Alon, U.; Friedman, J.
Title Corrective jitter motion shows similar individual frequencies for the arm and the finger Type Journal Article
Year 2015 Publication Experimental Brain Research Abbreviated Journal Exp Brain Res
Volume 233 Issue 4 Pages 1307-1320
Keywords
Abstract A characteristic of visuomotor tracking of non-regular oscillating stimuli are high-frequency jittery corrective motions, oscillating around the tracked stimuli. However, the properties of these corrective jitter responses are not well understood. For example, does the jitter response show an idiosyncratic signature? What is the relationship between stimuli properties and jitter properties? Is the jitter response similar across effectors with different inertial properties? To answer these questions, we measured participants' jitter frequencies in two tracking tasks in the arm and the finger. Thirty participants tracked the same set of eleven non-regular oscillating stimuli, vertically moving on a screen, once with forward-backward arm movements (holding a tablet stylus) and once with upward-downward index finger movements (with a motion tracker attached). Participants' jitter frequencies and tracking errors varied systematically as a function of stimuli frequency and amplitude. Additionally, there were clear individual differences in average jitter frequencies between participants, ranging from 0.7 to 1.15 Hz, similar to values reported previously. A comparison of individual jitter frequencies in the two tasks showed a strong correlation between participants' jitter frequencies in the finger and the arm, despite the very different inertial properties of the two effectors. This result suggests that the corrective jitter response stems from common neural processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0014-4819 ISBN Medium
Area Expedition Conference
Notes PMID:25630905 Approved no
Call Number Serial 76
Permanent link to this record
 

 
Author (up) Noy, L.; Weiser, N.; Friedman, J.
Title Synchrony in Joint Action Is Directed by Each Participant's Motor Control System Type Journal Article
Year 2017 Publication Frontiers in Psychology Abbreviated Journal Front. Psychol.
Volume 8 Issue Pages 531
Keywords visuomotor tracking; mirror game; intermittent control; joint action; motor control
Abstract In this work, we ask how the probability of achieving synchrony in joint action is affected by the choice of motion parameters of each individual. We use the mirror game paradigm to study how changes in leader�s motion parameters, specifically frequency and peak velocity, affect the probability of entering the state of co-confidence (CC) motion: a dyadic state of synchronized, smooth and co-predictive motions. In order to systematically study this question, we used a one-person version of the mirror game, where the participant mirrored piece-wise rhythmic movements produced by a computer on a graphics tablet. We systematically varied the frequency and peak velocity of the movements to determine how these parameters affect the likelihood of synchronized joint action. To assess synchrony in the mirror game we used the previously developed marker of co-confident (CC) motions: smooth, jitter-less and synchronized motions indicative of co-predicative control. We found that when mirroring movements with low frequencies (i.e., long duration movements), the participants never showed CC, and as the frequency of the stimuli increased, the probability of observing CC also increased. This finding is discussed in the framework of motor control studies showing an upper limit on the duration of smooth motion. We confirmed the relationship between motion parameters and the probability to perform CC with three sets of data of open-ended two-player mirror games. These findings demonstrate that when performing movements together, there are optimal movement frequencies to use in order to maximize the possibility of entering a state of synchronized joint action. It also shows that the ability to perform synchronized joint action is constrained by the properties of our motor control systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-1078 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 84
Permanent link to this record
 

 
Author (up) Park, J.; Pazin, N.; Friedman, J.; Zatsiorsky, V.M.; Latash, M.L.
Title Mechanical properties of the human hand digits: Age-related differences Type Journal Article
Year 2014 Publication Clinical Biomechanics Abbreviated Journal
Volume 29 Issue 2 Pages 129–137
Keywords hand; aging; friction; apparent stiffness; damping
Abstract Background

Mechanical properties of human digits may have significant implications for the hand function. We quantified several mechanical characteristics of individual digits in young and older adults.

Methods

Digit tip friction was measured at several normal force values using a method of induced relative motion between the digit tip and the object surface. A modified quick-release paradigm was used to estimate digit apparent stiffness, damping, and inertial parameters. The subjects grasped a vertical handle instrumented with force/moment sensors using a prismatic grasp with four digits; the handle was fixed to the table. Unexpectedly, one of the sensors yielded leading to a quick displacement of the corresponding digit. A second-order, linear model was used to fit the force/displacement data.

Findings

Friction of the digit pads was significantly lower in older adults. The apparent stiffness coefficient values were higher while the damping coefficients were lower in older adults leading to lower damping ratio. The damping ratio was above unity for most data in young adults and below unity for older adults. Quick release of a digit led to force changes in other digits of the hand, likely due to inertial hand properties. These phenomena of “mechanical enslaving” were smaller in older adults although no significant difference was found in the inertial parameter in the two groups.

Interpretations

The decreased friction and damping ratio present challenges for the control of everyday prehensile tasks. They may lead to excessive digit forces and low stability of the grasped object.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-0033 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 73
Permanent link to this record