Records |
Author |
Zacks, O.; Friedman, J. |
Title |
Analogies can speed up the motor learning process |
Type |
Journal Article |
Year |
2020 |
Publication |
Scientific Reports |
Abbreviated Journal |
Sci Rep |
Volume |
10 |
Issue |
1 |
Pages |
6932 |
Keywords |
|
Abstract |
Analogies have been shown to improve motor learning in various tasks and settings. In this study we tested whether applying analogies can shorten the motor learning process and induce insight and skill improvement in tasks that usually demand many hours of practice. Kinematic measures were used to quantify participant's skill and learning dynamics. For this purpose, we used a drawing task, in which subjects drew lines to connect dots, and a mirror game, in which subjects tracked a moving stimulus. After establishing a baseline, subjects were given an analogy, explicit instructions or no further instruction. We compared their improvement in skill (quantified by coarticulation or smoothness), accuracy and movement duration. Subjects in the analogy and explicit groups improved their coarticulation in the target task, while significant differences were found in the mirror game only at a slow movement frequency between analogy and controls.We conclude that a verbal analogy can be a useful tool for rapidly changing motor kinematics and movement strategy in some circumstances, although in the tasks selected it did not produce better performance in most measurements than explicit guidance. Furthermore, we observed that different movement facets may improve independently from others, and may be selectively affected by verbal instructions. These results suggest an important role for the type of instruction in motor learning. |
Address |
Dept. of Physical Therapy, Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2045-2322 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:32332826; PMCID:PMC7181737 |
Approved |
no |
Call Number |
Penn State @ write.to.jason @ |
Serial |
105 |
Permanent link to this record |
|
|
|
Author |
Friedman, J.; Korman, M. |
Title |
Observation of an expert model induces a skilled movement coordination pattern in a single session of intermittent practice |
Type |
Journal Article |
Year |
2019 |
Publication |
Scientific Reports |
Abbreviated Journal |
Sci Rep |
Volume |
9 |
Issue |
1 |
Pages |
4609 |
Keywords |
|
Abstract |
We tested how observation of a skilled pattern of planar movements can assist in the learning of a new motor skill, which otherwise requires rigorous long-term practice to achieve fast and smooth performance. Sixty participants performed a sequence of planar hand movements on pre-test, acquisition, post-test and 24 h post-training blocks, under 1 of 4 conditions: an observation group (OG), a slowed observation group (SOG), a random motion control group (RMCG) and a double physical training control group (DPTCG). The OG and SOG observed an expert model's right hand performing the study task intermittently throughout acquisition, RMCG observed random dots movement instead of a model. Participants in the DPTCG received extra physical practice trials instead of the visually observed trials. Kinematic analysis revealed that only in conditions with observation of an expert model there was an instant robust improvement in motor planning of the task. This step-wise improvement was not only persistent in post-training retests but was also apparently implicit and subject to further incremental improvements in movement strategy over the period of 24 hours. The rapid change in motor strategy was accompanied by a transient within-session increase in spatial error for the observation groups, but this went away by 24 h post-training. We suggest that observation of hand movements of an expert model coaligned with self-produced movements during training can significantly condense the time-course of ecologically relevant drawing/writing skill mastery. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2045-2322 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:30872661 |
Approved |
no |
Call Number |
|
Serial |
94 |
Permanent link to this record |
|
|
|
Author |
Shaklai, S.; Mimouni-Bloch, A.; Levin, M.; Friedman, J. |
Title |
Development of finger force coordination in children |
Type |
Journal Article |
Year |
2017 |
Publication |
Experimental Brain Research |
Abbreviated Journal |
|
Volume |
235 |
Issue |
12 |
Pages |
3709–3720 |
Keywords |
|
Abstract |
Coordination is often observed as body parts moving together. However, when producing force with multiple fingers, the optimal coordination is not to produce similar forces with each finger, but rather for each finger to correct mistakes of other fingers. In this study, we aim to determine whether and how this skill develops in children aged 4-12 years. We measured this sort of coordination using the uncontrolled manifold hypothesis (UCM). We recorded finger forces produced by 60 typically developing children aged between 4 and 12 years in a finger-pressing task. The children controlled the height of an object on a screen by the total amount of force they produced on force sensors. We found that the synergy index, a measure of the relationship between “good” and “bad” variance, increased linearly as a function of age. This improvement was achieved by a selective reduction in “bad” variance rather than an increase in “good” variance. We did not observe differences between males and females, and the synergy index was not able to predict outcomes of upper limb behavioral tests after controlling for age. As children develop between the ages of 4 and 12 years, their ability to produce negative covariation between their finger forces improves, likely related to their improved ability to perform dexterous tasks. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1432-1106 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
Shaklai2017 |
Serial |
86 |
Permanent link to this record |
|
|
|
Author |
Dempsey-Jones, H.; Wesselink, D.B.; Friedman, J.; Makin, T.R. |
Title |
Organized Toe Maps in Extreme Foot Users |
Type |
Journal Article |
Year |
2019 |
Publication |
Cell Reports |
Abbreviated Journal |
Cell Reports |
Volume |
28 |
Issue |
11 |
Pages |
2748-2756.e4 |
Keywords |
|
Abstract |
Although the fine-grained features of topographic maps in the somatosensory cortex can be shaped by everyday experience, it is unknown whether behavior can support the expression of somatotopic maps where they do not typically occur. Unlike the fingers, represented in all primates, individuated toe maps have only been found in non-human primates. Using 1-mm resolution fMRI, we identify organized toe maps in two individuals born without either upper limb who use their feet to substitute missing hand function and even support their profession as foot artists. We demonstrate that the ordering and structure of the artists’ toe representation mimics typical hand representation. We further reveal “hand-like” features of activity patterns, not only in the foot area but also similarly in the missing hand area. We suggest humans may have an innate capacity for forming additional topographic maps that can be expressed with appropriate experience. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2211-1247 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
doi: 10.1016/j.celrep.2019.08.027 |
Approved |
no |
Call Number |
|
Serial |
99 |
Permanent link to this record |
|
|
|
Author |
Zopf, R.; Friedman, J.; Williams, M.A. |
Title |
The plausibility of visual information for hand ownership modulates multisensory synchrony perception |
Type |
Journal Article |
Year |
2015 |
Publication |
|
Abbreviated Journal |
Experimental Brain Research |
Volume |
233 |
Issue |
8 |
Pages |
2311-2321 |
Keywords |
Multisensory perception; Temporal synchrony perception; Virtual hand; Body representations; Body ownership; Sensory predictions |
Abstract |
We are frequently changing the position of our bodies and body parts within complex environments. How does the brain keep track of one’s own body? Current models of body ownership state that visual body ownership cues such as viewed object form and orientation are combined with multisensory information to correctly identify one’s own body, estimate its current location and evoke an experience of body ownership. Within this framework, it may be possible that the brain relies on a separate perceptual analysis of body ownership cues (e.g. form, orientation, multisensory synchrony). Alternatively, these cues may interact in earlier stages of perceptual processing—visually derived body form and orientation cues may, for example, directly modulate temporal synchrony perception. The aim of the present study was to distinguish between these two alternatives. We employed a virtual hand set-up and psychophysical methods. In a two-interval force-choice task, participants were asked to detect temporal delays between executed index finger movements and observed movements. We found that body-specifying cues interact in perceptual processing. Specifically, we show that plausible visual information (both form and orientation) for one’s own body led to significantly better detection performance for small multisensory asynchronies compared to implausible visual information. We suggest that this perceptual modulation when visual information plausible for one’s own body is present is a consequence of body-specific sensory predictions. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0014-4819 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
78 |
Permanent link to this record |