|   | 
Details
   web
Records
Author Tamir-Ostrover, H.; Hassin-Baer, S.; Fay-Karmon, T.; Friedman, J.
Title Quantifying Changes in Dexterity as a Result of Piano Training in People with Parkinson's Disease Type Journal Article
Year 2024 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)
Volume 24 Issue 11 Pages
Keywords Humans; *Parkinson Disease/physiopathology; Pilot Projects; Male; Aged; Female; Quality of Life; Middle Aged; Motor Skills/physiology; Music; Surveys and Questionnaires; Activities of Daily Living; Fingers/physiology/physiopathology; Parkinson's disease; dexterity; force sensors; music; piano; sonification; training; uncontrolled manifold
Abstract People with Parkinson's disease often show deficits in dexterity, which, in turn, can lead to limitations in performing activities of daily life. Previous studies have suggested that training in playing the piano may improve or prevent a decline in dexterity in this population. In this pilot study, we tested three participants on a six-week, custom, piano-based training protocol, and quantified dexterity before and after the intervention using a sensor-enabled version of the nine-hole peg test, the box and block test, a test of finger synergies using unidimensional force sensors, and the Quantitative Digitography test using a digital piano, as well as selected relevant items from the motor parts of the MDS-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and the Parkinson's Disease Questionnaire (PDQ-39) quality of life questionnaire. The participants showed improved dexterity following the training program in several of the measures used. This pilot study proposes measures that can track changes in dexterity as a result of practice in people with Parkinson's disease and describes a potential protocol that needs to be tested in a larger cohort.
Address Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN (up) Medium
Area Expedition Conference
Notes PMID:38894110; PMCID:PMC11174779 Approved no
Call Number Serial 124
Permanent link to this record
 

 
Author Lowenthal-Raz, J.; Liebermann, D.G.; Friedman, J.; Soroker, N.
Title Kinematic descriptors of arm reaching movement are sensitive to hemisphere-specific immediate neuromodulatory effects of transcranial direct current stimulation post stroke Type Journal Article
Year 2024 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 14 Issue 1 Pages 11971
Keywords Humans; *Transcranial Direct Current Stimulation/methods; Male; Female; Middle Aged; *Stroke/physiopathology/therapy; Biomechanical Phenomena; Aged; *Arm/physiopathology; *Movement/physiology; *Stroke Rehabilitation/methods; Single-Blind Method; Cross-Over Studies
Abstract Transcranial direct current stimulation (tDCS) exerts beneficial effects on motor recovery after stroke, presumably by enhancement of adaptive neural plasticity. However, patients with extensive damage may experience null or deleterious effects with the predominant application mode of anodal (excitatory) stimulation of the damaged hemisphere. In such cases, excitatory stimulation of the non-damaged hemisphere might be considered. Here we asked whether tDCS exerts a measurable effect on movement quality of the hemiparetic upper limb, following just a single treatment session. Such effect may inform on the hemisphere that should be excited. Using a single-blinded crossover experimental design, stroke patients and healthy control subjects were assessed before and after anodal, cathodal and sham tDCS, each provided during a single session of reaching training (repeated point-to-point hand movement on an electronic tablet). Group comparisons of endpoint kinematics at baseline-number of peaks in the speed profile (NoP; smoothness), hand-path deviations from the straight line (SLD; accuracy) and movement time (MT; speed)-disclosed greater NoP, larger SLD and longer MT in the stroke group. NoP and MT revealed an advantage for anodal compared to sham stimulation of the lesioned hemisphere. NoP and MT improvements under anodal stimulation of the non-lesioned hemisphere correlated positively with the severity of hemiparesis. Damage to specific cortical regions and white-matter tracts was associated with lower kinematic gains from tDCS. The study shows that simple descriptors of movement kinematics of the hemiparetic upper limb are sensitive enough to demonstrate gain from neuromodulation by tDCS, following just a single session of reaching training. Moreover, the results show that tDCS-related gain is affected by the severity of baseline motor impairment, and by lesion topography.
Address Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel. nachum@soroker.online
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN (up) Medium
Area Expedition Conference
Notes PMID:38796610; PMCID:PMC11127956 Approved no
Call Number Serial 125
Permanent link to this record