Home | << 1 2 3 4 5 6 7 8 9 >> |
Records | |||||
---|---|---|---|---|---|
Author | Kaufman-Cohen, Y.; Friedman, J.; Levanon, Y.; Jacobi, G.; Doron, N.; Portnoy, S. | ||||
Title | Wrist Plane of Motion and Range During Daily Activities | Type | Journal Article | ||
Year | 2018 | Publication | American Journal of Occupational Therapy | Abbreviated Journal | Am J Occup Ther |
Volume | 72 | Issue | 6 | Pages | 1-10 |
Keywords | |||||
Abstract | OBJECTIVE. The dart-throwing motion (DTM) is a multiplane wrist motion that is needed for many daily occupations. Mobilization along the DTM plane may be essential for rehabilitation after wrist injury, but DTM angles are reported for the dominant hand alone, so their relevance to injury in the nondominant hand cannot be surmised. The aim of this study was to quantify the DTM plane angles for both hands during different activities of daily living (ADLs). METHOD. Forty-three healthy participants wore a twin-axis electrogoniometer during ADLs. RESULTS. No significant differences were found between the DTM plane angles of the dominant (20°�45°) and nondominant (15°�40°) hands. These angles varied by task and across participants. CONCLUSION. The DTM plane is a functional motion used by both hands during ADLs. Because the DTM plane angle differs among hands, tasks, and individual clients, wrist rehabilitation involving the DTM plane should not be limited to a singular DTM plane angle.OBJECTIVE. The dart-throwing motion (DTM) is a multiplane wrist motion that is needed for many daily occupations. Mobilization along the DTM plane may be essential for rehabilitation after wrist injury, but DTM angles are reported for the dominant hand alone, so their relevance to injury in the nondominant hand cannot be surmised. The aim of this study was to quantify the DTM plane angles for both hands during different activities of daily living (ADLs). METHOD. Forty-three healthy participants wore a twin-axis electrogoniometer during ADLs. RESULTS. No significant differences were found between the DTM plane angles of the dominant (20°�45°) and nondominant (15°�40°) hands. These angles varied by task and across participants. CONCLUSION. The DTM plane is a functional motion used by both hands during ADLs. Because the DTM plane angle differs among hands, tasks, and individual clients, wrist rehabilitation involving the DTM plane should not be limited to a singular DTM plane angle. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0272-9490 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 92 | |||
Permanent link to this record | |||||
Author | Salzer, Y.; Friedman, J. | ||||
Title | Reaching trajectories unravel modality-dependent temporal dynamics of the automatic process in the Simon task: a model-based approach | Type | Journal Article | ||
Year | 2020 | Publication | Psychological Research | Abbreviated Journal | Psychol Res |
Volume | 84 | Issue | 6 | Pages | 1700-1713 |
Keywords | |||||
Abstract | The Simon effect represents a phenomenon in which the location of the stimuli affects the speed and accuracy of the response, despite being irrelevant for the task demands. This is believed to be due to an automatic activation of a response corresponding to the location of the stimuli, which conflicts with the controlled decision process based on relevant stimuli features. Previously, differences in the nature of the Simon effect (i.e., the pattern of change of the effect across the distribution of response times) between visual and somatosensory stimuli were reported. We hypothesize that the temporal dynamics of visual and somatosensory automatic and controlled processes vary, thus driving the reported behavioral differences. While most studies have used response times to study the underlying mechanisms involved, in this study we had participants reach out to touch the targets and recorded their arm movements using a motion capture system. Importantly, the participants started their movements before a final decision was made. In this way, we could analyze the movements to gain insights into the competition between the automatic and controlled processes. We used this technique to describe the results in terms of a model assuming automatic activation due to location-based evidence, followed by inhibition. We found that for the somatosensory Simon effect, the decay of the automatic process is significantly slower than for the visual Simon effect, suggesting quantitative differences in this automatic process between the visual and somatosensory modalities. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0340-0727 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | PMID:30980236 | Approved | no | ||
Call Number | Serial | 97 | |||
Permanent link to this record | |||||
Author | Prushansky, T.; Kaplan-Gadasi, L.; Friedman, J. | ||||
Title | The relationship between thoracic posture and ultrasound echo intensity of muscles spanning this region in healthy men and women | Type | Journal Article | ||
Year | 2023 | Publication | Physiotherapy Theory and Practice | Abbreviated Journal | Physiother Theory Pract |
Volume | 39 | Issue | 6 | Pages | 1257-1265 |
Keywords | Ultrasound imaging; muscle echogenicity; posture; thoracic kyphosis | ||||
Abstract | PURPOSE: Skeletal muscle echogenicity intensity (EI) is considered a measure of muscle quality, being associated with old age and pathologies. Whether EI variations can be identified in healthy adults, due to habitual shortened or elongated muscle position is unknown. Thus, this study aimed to assess the relationship between thoracic kyphosis angulation and EI scores of muscles spanning this region ((Lower Trapezius (LT), Rhomboid Major (RM), Erector Spine (ES)) in healthy young people and in addition to examine the relationship between the change in thoracic kyphosis angle from relaxed to upright position (� degrees ) and the EI of these muscles. METHODS: Thoracic kyphosis in relaxed and erect standing was measured using a digital inclinometer in 29 healthy adults (16 women, 13 men), aged 25-35 years. The thoracic kyphosis angles including the difference between relaxed and erect postures (� degrees ) were correlated to the EI scores of right and left LT, RM and ES. RESULTS: No significant differences in EI were found between the 3 muscles EI or between sides, hence they were pooled together to a total thoracic EI score (TTEI). Although the TTEI did not correlate with relaxed or erect thoracic kyphosis, it was significantly but negatively correlated with � degrees in the entire group: Pearson's correlation coefficient of r = -0.544; p = .01 and in men; r = -0.732; p = .01, failing to reach significance in women; r = -0.457. CONCLUSION: The negative association between the EI of the explored muscles and � degrees could imply a possible relationship between these muscles range of movement excursions and their composition. | ||||
Address | Department of Physical Therapy, the Stanley Stayer School of Health Professions, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel | ||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0959-3985 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | PMID:35125048 | Approved | no | ||
Call Number | Serial | 116 | |||
Permanent link to this record | |||||
Author | Noy, L.; Alon, U.; Friedman, J. | ||||
Title | Corrective jitter motion shows similar individual frequencies for the arm and the finger | Type | Journal Article | ||
Year | 2015 | Publication | Experimental Brain Research | Abbreviated Journal | Exp Brain Res |
Volume | 233 | Issue | 4 | Pages | 1307-1320 |
Keywords | |||||
Abstract | A characteristic of visuomotor tracking of non-regular oscillating stimuli are high-frequency jittery corrective motions, oscillating around the tracked stimuli. However, the properties of these corrective jitter responses are not well understood. For example, does the jitter response show an idiosyncratic signature? What is the relationship between stimuli properties and jitter properties? Is the jitter response similar across effectors with different inertial properties? To answer these questions, we measured participants' jitter frequencies in two tracking tasks in the arm and the finger. Thirty participants tracked the same set of eleven non-regular oscillating stimuli, vertically moving on a screen, once with forward-backward arm movements (holding a tablet stylus) and once with upward-downward index finger movements (with a motion tracker attached). Participants' jitter frequencies and tracking errors varied systematically as a function of stimuli frequency and amplitude. Additionally, there were clear individual differences in average jitter frequencies between participants, ranging from 0.7 to 1.15 Hz, similar to values reported previously. A comparison of individual jitter frequencies in the two tasks showed a strong correlation between participants' jitter frequencies in the finger and the arm, despite the very different inertial properties of the two effectors. This result suggests that the corrective jitter response stems from common neural processes. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0014-4819 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | PMID:25630905 | Approved | no | ||
Call Number | Serial | 76 | |||
Permanent link to this record | |||||
Author | Portnoy, S.; Rosenberg, L.; Alazraki, T.; Elyakim, E.; Friedman, J. | ||||
Title | Differences in Muscle Activity Patterns and Graphical Product Quality in Children Copying and Tracing Activities on Horizontal or Vertical Surfaces | Type | Journal Article | ||
Year | 2015 | Publication | Journal of Electromyography and Kinesiology | Abbreviated Journal | Journal of Electromyography and Kinesiology |
Volume | 25 | Issue | 3 | Pages | 540�547 |
Keywords | Motor equivalence; Electromyography; Tablet; Occupational Therapy; Muscle fatigue; Motor control | ||||
Abstract | The observation that a given task, e.g. producing a signature, looks similar when created by different motor commands and different muscles groups is known as motor equivalence. Relatively little data exists regarding the characteristics of motor equivalence in children. In this study, we compared the level of performance when performing a tracing task and copying figures in two common postures: while sitting at a desk and while standing in front of a wall, among preschool children. In addition, we compared muscle activity patterns in both postures. Specifically, we compared the movements of 35 five- to six-year old children, recording the same movements of copying figures and path tracing on an electronic tablet in both a horizontal orientation, while sitting, and a vertical orientation, while standing. Different muscle activation patterns were observed between the postures, however no significant difference in the performance level was found, providing evidence of motor equivalence at this young age. The study presents a straightforward method of assessing motor equivalence that can be extended to other stages of development as well as motor disorders. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 1050-6411 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 77 | |||
Permanent link to this record |