Records |
Author |
Latash, M.L., Friedman, J., Kim, S.W., Feldman, A.G., Zatsiorsky, V.M. |
Title |
Prehension Synergies and Control with Referent Hand Configurations |
Type |
Journal Article |
Year |
2010 |
Publication |
Experimental Brain Research |
Abbreviated Journal |
Exp Brain Res |
Volume |
202 |
Issue |
1 |
Pages |
213-229 |
Keywords |
|
Abstract |
We used the framework of the equilibrium-point hypothesis (in its updated form based on the notion of referent configuration) to investigate the multi-digit synergies at two levels of a hypothetical hierarchy involved in prehensile actions. Synergies were analyzed at the thumb-virtual finger level (virtual finger is an imaginary digit with the mechanical action equivalent to that of the four actual fingers) and at the individual finger level. The subjects performed very quick vertical movements of a handle into a target. A load could be attached off-center to provide a pronation or supination torque. In a few trials, the handle was unexpectedly fixed to the table and the digits slipped off the sensors. In such trials, the hand stopped at a higher vertical position and rotated into pronation or supination depending on the expected torque. The aperture showed non-monotonic changes with a large, fast decrease and further increase, ending up with a smaller distance between the thumb and the fingers as compared to unperturbed trials. Multi-digit synergies were quantified using indices of co-variation between digit forces and moments of force across unperturbed trials. Prior to the lifting action, high synergy indices were observed at the individual finger level while modest indices were observed at the thumb-virtual finger level. During the lifting action, the synergies at the individual finger level disappeared while the synergy indices became higher at the thumb-virtual finger level. The results support the basic premise that, within a given task, setting a referent configuration may be described with a few referent values of variables that influence the equilibrium state, to which the system is attracted. Moreover, the referent configuration hypothesis can help interpret the data related to the trade-off between synergies at different hierarchical levels. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
Penn State @ write.to.jason @ |
Serial |
19 |
Permanent link to this record |
|
|
|
Author |
Friedman, J.; Korman, M. |
Title |
Kinematic Strategies Underlying Improvement in the Acquisition of a Sequential Finger Task with Self-Generated vs. Cued Repetition Training |
Type |
Journal Article |
Year |
2012 |
Publication |
PLoS one |
Abbreviated Journal |
PLoS One |
Volume |
7 |
Issue |
12 |
Pages |
e52063 |
Keywords |
|
Abstract |
Many motor skills, such as typing, consist of articulating simple movements into novel sequences that are executed faster and smoother with practice. Dynamics of re-organization of these movement sequences with multi-session training and its dependence on the amount of self-regulation of pace during training is not yet fully understood. In this study, participants practiced a sequence of key presses. Training sessions consisted of either externally (Cued) or self-initiated (Uncued) training. Long-term improvements in performance speed were mainly due to reducing gaps between finger movements in both groups, but Uncued training induced higher gains. The underlying kinematic strategies producing these changes and the representation of the trained sequence differed significantly across subjects, although net gains in speed were similar. The differences in long-term memory due to the type of training and the variation in strategies between subjects, suggest that the different neural mechanisms may subserve the improvements observed in overall performance. |
Address |
Department of Cognitive Science, Macquarie University, Sydney, Australia ; ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1932-6203 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:23272210 |
Approved |
no |
Call Number |
|
Serial |
41 |
Permanent link to this record |
|
|
|
Author |
Awasthi, B.; Sowman, P.F.; Friedman, J.; Williams, M.A. |
Title |
Distinct spatial scale sensitivities for early categorisation of Faces and Places: Neuromagnetic and Behavioural Findings |
Type |
Journal Article |
Year |
2013 |
Publication |
Frontiers in Human Neuroscience |
Abbreviated Journal |
|
Volume |
7 |
Issue |
91 |
Pages |
|
Keywords |
|
Abstract |
Research exploring the role of spatial frequencies in rapid stimulus detection and categorisation report flexible reliance on specific spatial frequency bands. Here, through a set of behavioural and magnetoencephalography (MEG) experiments, we investigated the role of low spatial frequency (LSF)(25 cpf) information during the categorisation of faces and places. Reaction time measures revealed significantly faster categorisation of faces driven by LSF information, while rapid categorisation of places was facilitated by HSF information. The MEG study showed significantly earlier latency of the M170 component for LSF faces compared to HSF faces. Moreover, the M170 amplitude was larger for LSF faces than for LSF places, whereas the reverse pattern was evident for HSF faces and places. These results suggest that spatial frequency modulates the processing of category specific information for faces and places. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1662-5161 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
67 |
Permanent link to this record |
|
|
|
Author |
Noy, L.; Alon, U.; Friedman, J. |
Title |
Corrective jitter motion shows similar individual frequencies for the arm and the finger |
Type |
Journal Article |
Year |
2015 |
Publication |
Experimental Brain Research |
Abbreviated Journal |
Exp Brain Res |
Volume |
233 |
Issue |
4 |
Pages |
1307-1320 |
Keywords |
|
Abstract |
A characteristic of visuomotor tracking of non-regular oscillating stimuli are high-frequency jittery corrective motions, oscillating around the tracked stimuli. However, the properties of these corrective jitter responses are not well understood. For example, does the jitter response show an idiosyncratic signature? What is the relationship between stimuli properties and jitter properties? Is the jitter response similar across effectors with different inertial properties? To answer these questions, we measured participants' jitter frequencies in two tracking tasks in the arm and the finger. Thirty participants tracked the same set of eleven non-regular oscillating stimuli, vertically moving on a screen, once with forward-backward arm movements (holding a tablet stylus) and once with upward-downward index finger movements (with a motion tracker attached). Participants' jitter frequencies and tracking errors varied systematically as a function of stimuli frequency and amplitude. Additionally, there were clear individual differences in average jitter frequencies between participants, ranging from 0.7 to 1.15 Hz, similar to values reported previously. A comparison of individual jitter frequencies in the two tasks showed a strong correlation between participants' jitter frequencies in the finger and the arm, despite the very different inertial properties of the two effectors. This result suggests that the corrective jitter response stems from common neural processes. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0014-4819 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:25630905 |
Approved |
no |
Call Number |
|
Serial |
76 |
Permanent link to this record |
|
|
|
Author |
Awasthi, B.; Williams, M.A.; Friedman, J. |
Title |
Examining the role of red background in magnocellular contribution to face perception |
Type |
Journal Article |
Year |
2016 |
Publication |
PeerJ |
Abbreviated Journal |
PeerJ |
Volume |
4 |
Issue |
|
Pages |
e1617 |
Keywords |
|
Abstract |
This study examines the role of the magnocellular system in the early stages of face perception, in particular sex categorization. Utilizing the specific property of magnocellular suppression in red light, we investigated visually guided reaching to low and high spatial frequency hybrid faces against red and grey backgrounds. The arm movement curvature measure shows that reduced response of the magnocellular pathway interferes with the low spatial frequency component of face perception. This finding provides behavioral evidence for magnocellular contribution to non-emotional aspect of face perception. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
en |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2167-8359 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
81 |
Permanent link to this record |