|   | 
Details
   web
Records
Author Friedman, J.; Raveh, E.; Weiss, T.; Itkin, S.; Niv, D.; Hani, M.; Portnoy, S.
Title Applying Incongruent Visual-Tactile Stimuli during Object Transfer with Vibro-Tactile Feedback Type
Year 2019 Publication Journal of Visualized Experiments : JoVE Abbreviated Journal J Vis Exp
Volume 147 Issue Pages e59493
Keywords (down)
Abstract The application of incongruent sensory signals that involves disrupted tactile feedback is rarely explored, specifically with the presence of vibrotactile feedback (VTF). This protocol aims to test the effect of VTF on the response to incongruent visual-tactile stimuli. The tactile feedback is acquired by grasping a block and moving it across a partition. The visual feedback is a real-time virtual presentation of the moving block, acquired using a motion capture system. The congruent feedback is the reliable presentation of the movement of the block, so that the subject feels that the block is grasped and see it move along with the path of the hand. The incongruent feedback appears as the movement of the block diverts from the actual movement path, so that it seems to drop from the hand when it is actually still held by the subject, thereby contradicting the tactile feedback. Twenty subjects (age 30.2 +/- 16.3) repeated 16 block transfers, while their hand was hidden. These were repeated with VTF and without VTF (total of 32 block transfers). Incongruent stimuli were presented randomly twice within the 16 repetitions in each condition (with and without VTF). Each subject was asked to rate the difficulty level of performing the task with and without the VTF. There were no statistically significant differences in the length of the hand paths and durations between transfers recorded with congruent and incongruent visual-tactile signals – with and without the VTF. The perceived difficulty level of performing the task with the VTF significantly correlated with the normalized path length of the block with VTF (r = 0.675, p = 0.002). This setup is used to quantify the additive or reductive value of VTF during motor function that involves incongruent visual-tactile stimuli. Possible applications are prosthetics design, smart sport-wear, or any other garments that incorporate VTF.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1940-087X ISBN Medium
Area Expedition Conference
Notes PMID:31180348 Approved no
Call Number Serial 101
Permanent link to this record
 

 
Author Kaufman-Cohen, Y.; Levanon, Y.; Friedman, J.; Yaniv, Y.; Portnoy, S.
Title Home exercise in the dart-throwing motion plane after distal radius fractures: A Pilot Randomized Controlled Trial Type Journal Article
Year 2020 Publication Journal of Hand Therapy Abbreviated Journal
Volume Issue Pages
Keywords (down)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 103
Permanent link to this record
 

 
Author Zacks, O.; Friedman, J.
Title Analogies can speed up the motor learning process Type Journal Article
Year 2020 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 10 Issue 1 Pages 6932
Keywords (down)
Abstract Analogies have been shown to improve motor learning in various tasks and settings. In this study we tested whether applying analogies can shorten the motor learning process and induce insight and skill improvement in tasks that usually demand many hours of practice. Kinematic measures were used to quantify participant's skill and learning dynamics. For this purpose, we used a drawing task, in which subjects drew lines to connect dots, and a mirror game, in which subjects tracked a moving stimulus. After establishing a baseline, subjects were given an analogy, explicit instructions or no further instruction. We compared their improvement in skill (quantified by coarticulation or smoothness), accuracy and movement duration. Subjects in the analogy and explicit groups improved their coarticulation in the target task, while significant differences were found in the mirror game only at a slow movement frequency between analogy and controls.We conclude that a verbal analogy can be a useful tool for rapidly changing motor kinematics and movement strategy in some circumstances, although in the tasks selected it did not produce better performance in most measurements than explicit guidance. Furthermore, we observed that different movement facets may improve independently from others, and may be selectively affected by verbal instructions. These results suggest an important role for the type of instruction in motor learning.
Address Dept. of Physical Therapy, Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:32332826; PMCID:PMC7181737 Approved no
Call Number Penn State @ write.to.jason @ Serial 105
Permanent link to this record
 

 
Author Lerner, O.; Friedman, J.; Frenkel-Toledo, S.
Title The effect of high-definition transcranial direct current stimulation intensity on motor performance in healthy adults: a randomized controlled trial Type Journal Article
Year 2021 Publication Journal of NeuroEngineering and Rehabilitation Abbreviated Journal J NeuroEngineering Rehabil
Volume 18 Issue Pages 103
Keywords (down)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1743-0003 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 109
Permanent link to this record
 

 
Author Krasovsky, T.; Keren-Capelovitch, T.; Friedman, J.; Weiss, P.L.
Title Self-feeding kinematics in an ecological setting: typically developing children and children with cerebral palsy Type Journal Article
Year 2021 Publication IEEE Transactions on Neural Systems and Rehabilitation Engineering : a Publication of the IEEE Engineering in Medicine and Biology Society Abbreviated Journal IEEE Trans Neural Syst Rehabil Eng
Volume 29 Issue Pages 1462-1469
Keywords (down)
Abstract Assessment of self-feeding kinematics is seldom performed in an ecological setting. In preparation for development of an instrumented spoon for measurement of self-feeding in children with cerebral palsy (CP), the current work aimed to evaluate upper extremity kinematics of self-feeding in young children with typical development (TD) and a small, age-matched group of children with CP in a familiar setting, while eating with a spoon. METHODS: Sixty-five TD participants and six children diagnosed with spastic CP, aged 3-9 years, fed themselves while feeding was measured using miniature three-dimensional motion capture sensors (trakStar). Kinematic variables associated with different phases of self-feeding cycle (movement time, curvature, time to peak velocity and smoothness) were compared across age-groups in the TD sample and between TD children and those with CP. RESULTS: Significant between-age group differences were identified in movement times, time to peak velocity and curvature. Children with CP demonstrated slower, less smooth self-feeding movements, potentially related to activity limitations. CONCLUSIONS: The identified kinematic variables form a basis for implementation of self-feeding performance assessment in children of different ages, including those with CP, which can be deployed via an instrumented spoon.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1534-4320 ISBN Medium
Area Expedition Conference
Notes PMID:34280104 Approved no
Call Number Serial 110
Permanent link to this record