|   | 
Details
   web
Records
Author Friedman, Jason; Brown, Scott; Finkbeiner, Matthew
Title Linking cognitive and reaching trajectories via intermittent movement control Type Journal Article
Year (down) 2013 Publication Journal of Mathematical Psychology Abbreviated Journal
Volume 57 Issue 3-4 Pages 140-151
Keywords Decision making; Diffusion model; Reaction times; Arm movements; Submovements
Abstract Theories of decision-making have traditionally been constrained by reaction time data. A limitation of reaction time data, particularly for studying the temporal dynamics of cognitive processing, is that they index only the endpoint of the decision making process. Recently, physical reaching trajectories have been used as proxies for underlying mental trajectories through decision space. We suggest that this approach has been oversimplified: while it is possible for the motor control system to access the current state of the evidence accumulation process, this access is intermittent. Instead, we demonstrate how a model of arm movements that assumes intermittent, not continuous, access to the decision process is sufficient to describe the effects of stimulus quality and viewing time in curved reaching movements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 70
Permanent link to this record
 

 
Author Awasthi, Bhuvanesh; Friedman, Jason; Williams, Mark A
Title Reach Trajectories Reveal Delayed Processing of Low Spatial Frequency Faces in Developmental Prosopagnosia Type Journal Article
Year (down) 2012 Publication Cognitive Neuroscience Abbreviated Journal
Volume 3 Issue 2 Pages 120-130
Keywords
Abstract Developmental prosopagnosia (DP) is characterized by a selective deficit in face recognition despite normal cognitive and neurological functioning. Previous research has established configural processing deficits in DP subjects. Low spatial frequency (LSF) information subserves configural face processing. Using hybrid stimuli, here we examined the evolution of perceptual dynamics and integration of LSF information by DP subjects while they pointed to high spatial frequency (HSF) face targets. Permutation analysis revealed a 230-ms delay in LSF processing by DP subjects as compared to controls. This delayed processing is likely to contribute to the difficulties associated with face recognition in DP subjects and is reflective of their alleged reliance on local rather than global features in face perception. These results suggest that quick and efficient processing of LSF information is critical for the development of normal face perception.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Penn State @ write.to.jason @ Serial 27
Permanent link to this record
 

 
Author Nahab, Fatta; Kundu, Prantik; Gallea, Cecile; Kakareka, John; Pursley, Randy; Pohida, Tom; Miletta, Nathaniel; Friedman, Jason; Hallett, Mark
Title The neural processes underlying self-agency Type Journal Article
Year (down) 2011 Publication Cerebral Cortex Abbreviated Journal
Volume 21 Issue 1 Pages 48-55
Keywords
Abstract Self-agency (SA) is the individual’s perception that an action is the consequence of his/her own intention. The neural networks underlying SA are not well understood. We carried out a novel, ecologically valid, virtual-reality experiment using BOLD-fMRI where SA could be modulated in real-time while subjects performed voluntary finger movements. Behavioral testing was also performed to assess the explicit judgment of SA. Twenty healthy volunteers completed the experiment. Results of the behavioral testing demonstrated paradigm validity along with the identification of a bias that led subjects to over- or underestimate the amount of control they had. The fMRI experiment identified two discrete networks. These leading and lagging networks likely represent a spatial and temporal flow of information, with the leading network serving the role of mismatch detection and the lagging network receiving this information and

mediating its elevation to conscious awareness, giving rise to SA.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Penn State @ write.to.jason @ Serial 21
Permanent link to this record
 

 
Author Finkbeiner, Matthew; Friedman, Jason
Title The flexibility of nonconsciously deployed cognitive processes: Evidence from masked congruence priming Type Journal Article
Year (down) 2011 Publication PLoS ONE Abbreviated Journal
Volume 6 Issue 2 Pages e17095
Keywords
Abstract Background

It is well accepted in the subliminal priming literature that task-level properties modulate nonconscious processes. For example, in tasks with a limited number of targets, subliminal priming effects are limited to primes that are physically similar to the targets. In contrast, when a large number of targets are used, subliminal priming effects are observed for primes that share a semantic (but not necessarily physical) relationship with the target. Findings such as these have led researchers to conclude that task-level properties can direct nonconscious processes to be deployed exclusively over central (semantic) or peripheral (physically specified) representations.

Principal Findings

We find distinct patterns of masked priming for “novel” and “repeated” primes within a single task context. Novel primes never appear as targets and thus are not seen consciously in the experiment. Repeated primes do appear as targets, thereby lending themselves to the establishment of peripheral stimulus-response mappings. If the source of the masked priming effect were exclusively central or

peripheral, then both novel and repeated primes should yield similar patterns of priming. In contrast, we find that both novel and repeated primes produce robust, yet distinct, patterns of priming.

Conclusions

Our findings indicate that nonconsciously elicited cognitive processes can be flexibly deployed over both central and peripheral representations within a single task context. While we agree that task level properties can influence nonconscious processes, our findings sharply constrain the extent of this influence. Specifically, our findings are inconsistent with extant accounts which hold that the influence of task-level properties is strong enough to restrict the deployment of nonconsciously elicited cognitive processes to a single type of representation (i.e. central or peripheral).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Penn State @ write.to.jason @ Serial 22
Permanent link to this record
 

 
Author Zopf, Regine; Truong, Sandra; Finkbeiner, Matthew; Friedman, Jason; Williams, Mark A
Title Viewing and feeling touch modulates hand position for reaching Type Journal Article
Year (down) 2011 Publication Neuropsychologia Abbreviated Journal
Volume 49 Issue 5 Pages 1287–1293
Keywords
Abstract Action requires knowledge of our body location in space. Here we asked if interactions with the external world prior to a reaching action influence how visual location information is used. We investigated if the temporal synchrony between viewing and feeling touch modulates the integration of visual and proprioceptive body location information for action. We manipulated the synchrony between viewing and feeling touch in the Rubber Hand Illusion paradigm prior to participants performing a ballistic reaching task to a visually specified target. When synchronous touch was given, reaching trajectories were significantly shifted compared to asynchronous touch. The direction of this shift suggests that touch influences the encoding of hand position for action. On the basis of this data and previous findings, we propose that the brain uses correlated cues from passive touch and vision to update its own position for action and experience of self-location.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Penn State @ write.to.jason @ Serial 23
Permanent link to this record