|   | 
Details
   web
Records
Author Roijezon, U.; Djupsjobacka, M.; Bjorklund, M.; Hager-Ross, C.; Grip, H.; Liebermann, D.G.
Title Kinematics of fast cervical rotations in persons with chronic neck pain: a cross-sectional and reliability study Type Journal Article
Year 2010 Publication BMC Musculoskeletal Disorders Abbreviated Journal BMC Musculoskelet Disord
Volume 11 Issue Pages 222
Keywords Adult; Aged; Biomechanics/*physiology; Cervical Vertebrae/*physiopathology; Chronic Disease; Cross-Sectional Studies; Female; Head Movements/*physiology; Humans; Middle Aged; Neck Pain/*diagnosis/*etiology/physiopathology; Physical Examination/methods; Reproducibility of Results; Rotation/*adverse effects; Time Factors; Young Adult
Abstract BACKGROUND: Assessment of sensorimotor function is useful for classification and treatment evaluation of neck pain disorders. Several studies have investigated various aspects of cervical motor functions. Most of these have involved slow or self-paced movements, while few have investigated fast cervical movements. Moreover, the reliability of assessment of fast cervical axial rotation has, to our knowledge, not been evaluated before. METHODS: Cervical kinematics was assessed during fast axial head rotations in 118 women with chronic nonspecific neck pain (NS) and compared to 49 healthy controls (CON). The relationship between cervical kinematics and symptoms, self-rated functioning and fear of movement was evaluated in the NS group. A sub-sample of 16 NS and 16 CON was re-tested after one week to assess the reliability of kinematic variables. Six cervical kinematic variables were calculated: peak speed, range of movement, conjunct movements and three variables related to the shape of the speed profile. RESULTS: Together, peak speed and conjunct movements had a sensitivity of 76% and a specificity of 78% in discriminating between NS and CON, of which the major part could be attributed to peak speed (NS: 226 +/- 88 degrees /s and CON: 348 +/- 92 degrees /s, p < 0.01). Peak speed was slower in NS compared to healthy controls and even slower in NS with comorbidity of low-back pain. Associations were found between reduced peak speed and self-rated difficulties with running, performing head movements, car driving, sleeping and pain. Peak speed showed reasonably high reliability, while the reliability for conjunct movements was poor. CONCLUSIONS: Peak speed of fast cervical axial rotations is reduced in people with chronic neck pain, and even further reduced in subjects with concomitant low back pain. Fast cervical rotation test seems to be a reliable and valid tool for assessment of neck pain disorders on group level, while a rather large between subject variation and overlap between groups calls for caution in the interpretation of individual assessments.
Address Centre for Musculoskeletal Research, University of Gavle, Sweden. ulrik.roijezon@ltu.se
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1471-2474 ISBN (up) Medium
Area Expedition Conference
Notes PMID:20875135 Approved no
Call Number Serial 31
Permanent link to this record
 

 
Author Grip, H.; Tengman, E.; Liebermann, D.G.; Hager, C.K.
Title Kinematic analyses including finite helical axes of drop jump landings demonstrate decreased knee control long after anterior cruciate ligament injury Type Journal Article
Year 2019 Publication PloS one Abbreviated Journal PLoS One
Volume 14 Issue 10 Pages e0224261
Keywords
Abstract The purpose was to evaluate the dynamic knee control during a drop jump test following injury of the anterior cruciate ligament injury (ACL) using finite helical axes. Persons injured 17-28 years ago, treated with either physiotherapy (ACLPT, n = 23) or reconstruction and physiotherapy (ACLR, n = 28) and asymptomatic controls (CTRL, n = 22) performed a drop jump test, while kinematics were registered by motion capture. We analysed the Preparation phase (from maximal knee extension during flight until 50 ms post-touchdown) followed by an Action phase (until maximal knee flexion post-touchdown). Range of knee motion (RoM), and the length of each phase (Duration) were computed. The finite knee helical axis was analysed for momentary intervals of ~15 degrees of knee motion by its intersection (DeltaAP position) and inclination (DeltaAP Inclination) with the knee's Anterior-Posterior (AP) axis. Static knee laxity (KT100) and self-reported knee function (Lysholm score) were also assessed. The results showed that both phases were shorter for the ACL groups compared to controls (CTRL-ACLR: Duration 35+/-8 ms, p = 0.000, CTRL-ACLPT: 33+/-9 ms, p = 0.000) and involved less knee flexion (CTRL-ACLR: RoM 6.6+/-1.9 degrees , p = 0.002, CTRL-ACLR: 7.5 +/-2.0 degrees , p = 0.001). Low RoM and Duration correlated significantly with worse knee function according to Lysholm and higher knee laxity according to KT-1000. Three finite helical axes were analysed. The DeltaAP position for the first axis was most anterior in ACLPT compared to ACLR (DeltaAP position -1, ACLPT-ACLR: 13+/-3 mm, p = 0.004), with correlations to KT-1000 (rho 0.316, p = 0.008), while the DeltaAP inclination for the third axis was smaller in the ACLPT group compared to controls (DeltaAP inclination -3 ACLPT-CTRL: -13+/-5 degrees , p = 0.004) and showed a significant side difference in ACL injured groups during Action (Injured-Non-injured: 8+/-2.7 degrees , p = 0.006). Small DeltaAP inclination -3 correlated with low Lysholm (rho 0.391, p = 0.002) and high KT-1000 (rho -0.450, p = 0.001). Conclusions Compensatory movement strategies seem to be used to protect the injured knee during landing. A decreased DeltaAP inclination in injured knees during Action suggests that the dynamic knee control may remain compromised even long after injury.
Address Department of Community Medicine and Rehabilitation, Physiotherapy, Umea University, Umea, Sweden
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN (up) Medium
Area Expedition Conference
Notes PMID:31671111 Approved no
Call Number Serial 102
Permanent link to this record