|   | 
Details
   web
Records
Author Liebermann, D.G.; Ben-David, J.; Schweitzer, N.; Apter, Y.; Parush, A.
Title A field study of braking reactions during driving I: Triggering and modulation Type Journal Article
Year 1995 Publication Ergonomics Abbreviated Journal
Volume 38 Issue 9 Pages 1894-1902
Keywords
Abstract (down) The present experiment was carried out to explore the response of driving subjects to emergency braking. The field trial consisted of driving behind a leading vehicle while the following drivers' responses were recorded by telemetry. A group of 51 individuals performed a series of trials at two driving speeds (60 and 80km/h), two following distances (6 and 12 m), and two braking conditions (real and dummy braking). Not all of these subjects completed all conditions or the minimum number of trials. The dependent variables were the total braking time (TBT) and its subcomponents: braking reaction time (BRT), and accelerator-to-brake movement time (MT). These data were analysed in three separate three-way ANOVAs with repeated measures on all factors. The results showed that when subjects were not aware of the forthcoming braking, the distance and braking conditions had major effects on all dependent variables. At the shorter following distance drivers reacted and moved faster. Similarly, when the brakes were real compared with dummy (i.e. brake lights only) drivers reacted faster. In addition, drivers reacted to onset of brake lights in 83% of the cases when dummy braking was applied, compared with 97% when real brakes were applied. Speed of driving did not show any significant effects and did not appear to influence the cognitive or attentional set to anticipate an emergency manoeuvre. These findings suggest that changes in angular velocity during optic expansion of the leading vehicle may be used as a cue to modulate braking movement, while onset of brake lights alone may be enough to trigger a ‘ballistic’ preventive response.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 57
Permanent link to this record
 

 
Author Schweitzer, N.; Apter, Y.; Ben-David, J.; Liebermann, D.G.; Parush, A.
Title A field study of braking reactions during driving II: Minimum driver braking times Type Journal Article
Year 1995 Publication Ergonomics Abbreviated Journal
Volume 38 Issue 9 Pages 1903-1910
Keywords
Abstract (down) The minimum total braking time (i.e. the braking reaction time plus the accelerator-to-brake movement time) plays an important role in defining a minimum following gap (MFG). This study was designed to obtain a lower limit for this gap. Total braking times (TBT) of a group of 51 male and female young athletes were monitored during real driving conditions. Sudden braking applied by a leading private passenger vehicle initiated the trials. A within-subject design was used to study the effects of different factors on braking time. Individuals performed a series of semi-counterbalanced trials at two following distances (6 and 12 m), two speeds (60 and 80 km/h) and three expectancy stages (naïve driving, partial knowledge, and full knowledge of the forthcoming manoeuvre). A three-way repeated measures ANOVA showed no major effects of ‘speed’, but major effects of the ‘expectancy’ and the ‘distance’ factors. The experiment yielded a mean TBT of 0·678 s (SD = 0·144 s) for trials averaged over distances and speeds in the naïve condition only. The data emphasize the role played by pre-cues in the braking response prior to emergency stops. Both the level of awareness of the forthcoming manoeuvre and the distance between vehicles appear to determine the response time. The descriptive statistics presented may also provide the basis for an objective, acceptable and legally valid minimum time gap for prosecution of ‘careless’ drivers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 58
Permanent link to this record
 

 
Author Liebermann, D.G.; Krasovsky, T.; Berman, S.
Title Planning maximally smooth hand movements constrained to nonplanar workspaces Type Journal Article
Year 2008 Publication Journal of Motor Behavior Abbreviated Journal J Mot Behav
Volume 40 Issue 6 Pages 516-531
Keywords Adaptation, Physiological; Adult; Algorithms; Female; Hand/*physiology; Humans; *Intention; Kinesthesis/*physiology; Male; Models, Statistical; Movement/*physiology; Psychomotor Performance/*physiology; Reference Values; Writing
Abstract (down) The article characterizes hand paths and speed profiles for movements performed in a nonplanar, 2-dimensional workspace (a hemisphere of constant curvature). The authors assessed endpoint kinematics (i.e., paths and speeds) under the minimum-jerk model assumptions and calculated minimal amplitude paths (geodesics) and the corresponding speed profiles. The authors also calculated hand speeds using the 2/3 power law. They then compared modeled results with the empirical observations. In all, 10 participants moved their hands forward and backward from a common starting position toward 3 targets located within a hemispheric workspace of small or large curvature. Comparisons of modeled observed differences using 2-way RM-ANOVAs showed that movement direction had no clear influence on hand kinetics (p < .05). Workspace curvature affected the hand paths, which seldom followed geodesic lines. Constraining the paths to different curvatures did not affect the hand speed profiles. Minimum-jerk speed profiles closely matched the observations and were superior to those predicted by 2/3 power law (p < .001). The authors conclude that speed and path cannot be unambiguously linked under the minimum-jerk assumption when individuals move the hand in a nonplanar 2-dimensional workspace. In such a case, the hands do not follow geodesic paths, but they preserve the speed profile, regardless of the geometric features of the workspace.
Address Department of Physical Therapy, The Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Israel. dlieberm@post.tau.ac.il
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2895 ISBN Medium
Area Expedition Conference
Notes PMID:18980905 Approved no
Call Number Serial 33
Permanent link to this record
 

 
Author Berman, S.; Liebermann, D.G.; McIntyre, J.
Title Constrained Motion Control on a Hemispherical Surface – Path Planning Type Journal Article
Year 2014 Publication Journal of Neurophysiology Abbreviated Journal J Neurophysiol
Volume 111 Issue 5 Pages 954-968
Keywords Constrained motion; geodesics; path planning
Abstract (down) Surface-constrained motion, i.e., motion constraint by a rigid surface, is commonly found in daily activities. The current work investigates the choice of hand paths constrained to a concave hemispherical surface. To gain insight regarding the paths and their relationship with task dynamics, we simulated various control policies. The simulations demonstrated that following a geodesic path is advantageous not only in terms of path length, but also in terms of motor planning and sensitivity to motor command errors. These stem from the fact that the applied forces lie in a single plane (that of the geodesic path itself). To test whether human subjects indeed follow the geodesic, and to see how such motion compares to other paths, we recorded movements in a virtual haptic-visual environment from eleven healthy subjects. The task was comprised of point-to-point motion between targets at two elevations (30 degrees and 60 degrees ). Three typical choices of paths were observed from a frontal plane projection of the paths: circular arcs, straight lines, and arcs close to the geodesic path for each elevation. Based on the measured hand paths, we applied k-means blind separation to divide the subjects into three groups and compared performance indicators. The analysis confirmed that subjects who followed paths closest to the geodesic produced faster and smoother movements, compared to the others. The 'better' performance reflects the dynamical advantages of following the geodesic path, as shown by the simulations, and may also reflect invariant features of the control policies used to produce such a surface-constrained motion.
Address Ben-Gurion University of the Negev
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3077 ISBN Medium
Area Expedition Conference
Notes PMID:24259548 Approved no
Call Number Serial 72
Permanent link to this record
 

 
Author Frenkel-Toledo, S.; Liebermann, D.G.; Bentin, S.; Soroker, N.
Title Dysfunction of the Human Mirror Neuron System in Ideomotor Apraxia: Evidence from Mu Suppression Type Journal Article
Year 2016 Publication Journal of Cognitive Neuroscience Abbreviated Journal J Cogn Neurosci
Volume Issue Pages
Keywords
Abstract (down) Stroke patients with ideomotor apraxia (IMA) have difficulties controlling voluntary motor actions, as clearly seen when asked to imitate simple gestures performed by the examiner. Despite extensive research, the neurophysiological mechanisms underlying failure to imitate gestures in IMA remain controversial. The aim of the current study was to explore the relationship between imitation failure in IMA and mirror neuron system (MNS) functioning. Mirror neurons were found to play a crucial role in movement imitation and in imitation-based motor learning. Their recruitment during movement observation and execution is signaled in EEG recording by suppression of the lower (8-10 Hz) mu range. We examined the modulation of EEG in this range in stroke patients with left (n = 21) and right (n = 15) hemisphere damage during observation of video clips showing different manual movements. IMA severity was assessed by the DeRenzi's standardized diagnostic test. Results showed that failure to imitate observed manual movements correlated with diminished mu suppression in patients with damage to the right inferior parietal lobule and in patients with damage to the right inferior frontal gyrus pars opercularis-areas where major components of the human MNS are assumed to reside. Voxel-based lesion symptom mapping revealed a significant impact on imitation capacity for the left inferior and superior parietal lobules and the left post central gyrus. Both left and right hemisphere damages were associated with imitation failure typical of IMA, yet a clear demonstration of relationship to the MNS was obtained only in the right hemisphere damage group. Suppression of the 8-10 Hz range was stronger in central compared with occipital sites, pointing to a dominant implication of mu rather than alpha rhythms. However, the suppression correlated with De Renzi's apraxia test scores not only in central but also in occipital sites, suggesting a multifactorial mechanism for IMA, with a possible impact for deranged visual attention (alpha suppression) beyond the effect of MNS damage (mu suppression).
Address Loewenstein Hospital, Ra'anana, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0898-929X ISBN Medium
Area Expedition Conference
Notes PMID:26942323 Approved no
Call Number Serial 82
Permanent link to this record