Records |
Author |
Liebermann, D.G |
Title |
Biomechanical aspects of motor control in human landing |
Type |
Book Chapter |
Year |
2008 |
Publication |
Routledge Handbook of Biomechanics and Human Movement Science |
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
|
Keywords |
|
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
Routledge Ltd |
Place of Publication |
|
Editor |
R. Bartlett; Y. Hong |
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
47 |
Permanent link to this record |
|
|
|
Author |
Liebermann, D.G.; Franks I.M. |
Title |
Video-feedback and information technologies |
Type |
Book Chapter |
Year |
2008 |
Publication |
Essentials of notational analysis |
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
|
Keywords |
|
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
E & FN Spon Pub |
Place of Publication |
|
Editor |
I.M. Franks; M. Hughes |
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
48 |
Permanent link to this record |
|
|
|
Author |
Goodman, D.; Liebermann, D.G. |
Title |
Time-to-contact as a determiner of action: vision and motor control |
Type |
Book Chapter |
Year |
1992 |
Publication |
Vision and Motor Control |
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
335-349 |
Keywords |
|
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier Pub. Co |
Place of Publication |
Amsterdam, Holland |
Editor |
D. Elliott; J. Proteau |
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
43 |
Permanent link to this record |
|
|
|
Author |
Liebermann, D.G.; Berman, S.; Weingarden H.; Levin, M.F.; Weiss, P.L. |
Title |
Kinematic features of arm and trunk movements in stroke patients and age-matched healthy controls during reaching in virtual and physical environments |
Type |
Conference Article |
Year |
2009 |
Publication |
Virtual Rehabilitation International Conference |
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
179-184 |
Keywords |
|
Abstract |
Motor performance of stroke patients and healthy individuals was compared in terms of selected kinematic features of arm and trunk movements while subjects reached for visual targets in virtual (VR) and physical (PH) environments. In PH, the targets were placed at an extended arm distance, while in VR comparably placed virtual targets were presented via GestureTek's IREX system. Our goal was to obtain further insights into research methods related to VR-based rehabilitation. Eight right-hemiparetic stroke patients (age =46-87 years) and 8 healthy adults (age =51-73 years) completed 84 reaching movements in VR and PH environments while seated. The results showed that arm and trunk movements differed in the two environments in patients and to a lesser extent in healthy individuals. Arm motion of patients became jerkier in VR, with larger paths and longer movement durations, and presented greater arm torsion (i.e., larger elbow rotations around the hand-shoulder axis). Interestingly, patients also showed a significant reduction of compensatory trunk movements during VR reaching. The findings indicate that when targets were perceived to be beyond hand reach, stroke patients may be less able to estimate 3D virtual target locations obtained from the 2D TV planar displays. This was not the case for healthy participants. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
52 |
Permanent link to this record |
|
|
|
Author |
Frenkel-Toledo, S.; Bentin, S.; Perry, A.; Liebermann, D.G.; Soroker, N. |
Title |
Dynamics of the EEG Power in the Frequency and Spatial Domains During Observation and Execution of Manual Movements |
Type |
Journal Article |
Year |
2013 |
Publication |
Brain Research |
Abbreviated Journal |
Brain Res |
Volume |
1509 |
Issue |
|
Pages |
43-57 |
Keywords |
|
Abstract |
Mu suppression is the attenuation of EEG power in the alpha frequency range (8-12Hz) while executing or observing a motor action. Whereas typically observed at central scalp sites, there are diverging reports about the extent of the attenuation over the cortical mantle, its exact frequency range and the specificity of this phenomenon. We investigated the modulation of EEG oscillations in frequency-bands from 4 to 12Hz at frontal, central, parietal and occipital sites during the execution of manual movements and during observation of similar actions from allocentric (i.e., facing the actor) and egocentric (i.e., seeing the actor from behind) viewpoints. Suppression was determined relative to observation of a non-biological movement. Action observation elicited greater suppression in the lower (8-10Hz) compared to the higher mu range (10-12Hz), and greater suppression in the entire 4-12Hz range at frontal and central sites compared to parietal and occipital sites. In addition, suppression tended to be greater during observation of a motor action from allocentric compared to egocentric viewpoints. During execution of movement, suppression of the EEG occurred primarily in the higher alpha range and was absent at occipital sites. In the theta range (4-8Hz), the EEG amplitude was suppressed during action observation and execution. The results suggest a functional distinction between modulation of mu and alpha rhythms, and between the higher and lower ranges of the mu rhythms. The activity of the presumed human mirror neuron system seems primarily evident in the lower mu range and in the theta range. |
Address |
Sackler Faculty of Medicine, Tel Aviv University, Israel; Department of Neurological Rehabilitation, Loewenstein Hospital, Raanana, Israel. Electronic address: silvi197@bezeqint.net |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0006-8993 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:23500633 |
Approved |
no |
Call Number |
|
Serial |
68 |
Permanent link to this record |