|   | 
Details
   web
Records
Author Krasovsky, T.; Berman, S.; Liebermann, D.G.
Title Kinematic features of continuous hand reaching movements under simple and complex rhythmical constraints Type Journal Article
Year 2010 Publication Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology Abbreviated Journal J Electromyogr Kinesiol
Volume 20 Issue 4 Pages 636-641
Keywords *Acoustic Stimulation; Adult; Biomechanics; *Cues; Female; Hand/*physiology; Humans; Male; Movement/*physiology
Abstract BACKGROUND: Auditory cues are known to alter movement kinematics in healthy people as well as in people with neurological conditions (e.g., Parkinson's disease or stroke). Pacing movement to rhythmical constraints is known to change both the spatial and temporal features of movement. However, the effect of complexity of pacing on the spatial and temporal kinematic properties is still poorly understood. The current study investigated spatial and temporal aspects of movement (path and speed, respectively) and their integration while subjects followed simple isochronous or complex non-isochronous rhythmical constraints. Spatiotemporal decoupling was expected under the latter constraint. METHODS: Ten subjects performed point-to-point hand movements towards visual targets on the surface of a hemisphere, while following continuous auditory cues of different pace and meter. The spatial and temporal properties of movement were compared to geodesic paths and unimodal bell-shaped speed profiles, respectively. Multiple two-way RM-ANOVAs (pace [1-2 Hz] x meter [duple-triple]) were performed on the different kinematic variables calculated to assess hand deviations from the model data (p< or = 0.05). RESULTS: As expected, increasing pace resulted in straighter hand paths and smoother speed profiles. Meter, however, affected only the path (shorter and straighter under triple) without significantly changing speed. Such an effect was observed at the slow pace only. CONCLUSIONS: Under simple rhythmic cues, an increase in pace causes spontaneous adjustments in spatial features (straighter hand paths) while preserving temporal ones (maximally-smoothed hand speeds). Complex rhythmical cues in contrast perturb spatiotemporal coupling and challenge movement control. These results may have important practical implications in motor rehabilitation.
Address Department of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Canada
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-6411 ISBN Medium
Area Expedition Conference
Notes PMID:20382031 Approved no
Call Number Serial 32
Permanent link to this record
 

 
Author Liebermann, D.G.; Krasovsky, T.; Berman, S.
Title Planning maximally smooth hand movements constrained to nonplanar workspaces Type Journal Article
Year 2008 Publication Journal of Motor Behavior Abbreviated Journal J Mot Behav
Volume 40 Issue 6 Pages 516-531
Keywords Adaptation, Physiological; Adult; Algorithms; Female; Hand/*physiology; Humans; *Intention; Kinesthesis/*physiology; Male; Models, Statistical; Movement/*physiology; Psychomotor Performance/*physiology; Reference Values; Writing
Abstract The article characterizes hand paths and speed profiles for movements performed in a nonplanar, 2-dimensional workspace (a hemisphere of constant curvature). The authors assessed endpoint kinematics (i.e., paths and speeds) under the minimum-jerk model assumptions and calculated minimal amplitude paths (geodesics) and the corresponding speed profiles. The authors also calculated hand speeds using the 2/3 power law. They then compared modeled results with the empirical observations. In all, 10 participants moved their hands forward and backward from a common starting position toward 3 targets located within a hemispheric workspace of small or large curvature. Comparisons of modeled observed differences using 2-way RM-ANOVAs showed that movement direction had no clear influence on hand kinetics (p < .05). Workspace curvature affected the hand paths, which seldom followed geodesic lines. Constraining the paths to different curvatures did not affect the hand speed profiles. Minimum-jerk speed profiles closely matched the observations and were superior to those predicted by 2/3 power law (p < .001). The authors conclude that speed and path cannot be unambiguously linked under the minimum-jerk assumption when individuals move the hand in a nonplanar 2-dimensional workspace. In such a case, the hands do not follow geodesic paths, but they preserve the speed profile, regardless of the geometric features of the workspace.
Address Department of Physical Therapy, The Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Israel. dlieberm@post.tau.ac.il
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2895 ISBN Medium
Area Expedition Conference
Notes PMID:18980905 Approved no
Call Number Serial 33
Permanent link to this record
 

 
Author Liebermann, D.G.; Defrin, R.
Title Characteristics of the nociceptive withdrawal response elicited under aware and unaware conditions Type Journal Article
Year 2009 Publication Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology Abbreviated Journal J Electromyogr Kinesiol
Volume 19 Issue 2 Pages e114-22
Keywords Adult; Arm/*physiopathology; Attention; *Awareness; Cues; Female; Humans; Male; Movement; *Muscle Contraction; Muscle, Skeletal/*physiopathology; Pain/*physiopathology; *Reflex; *Startle Reaction
Abstract BACKGROUND: Nociceptive withdrawal reflexes (NWR) are subject to supraspinal modulation. Therefore, awareness about a noxious stimulation may affect its characteristics. The goal of this study was to investigate the effect of different degrees of awareness on the NWR. METHOD: Eight subjects performed back and forth hand movements from a common starting point towards four visual targets during which NWR was evoked when subjects were either unaware or aware of a noxious stimulation (unaware-NWR and aware-NWR). For the comparison between the NWR under both conditions, onset latencies and kinematic variables were computed respectively from the recorded Biceps Brachii EMG and from the spatial coordinates of hand reflective markers. RESULTS: The onset latency of unaware-NWR (mean+/-SD 73.9+/-13 ms) was significantly shorter than that of the aware-NWR (91.1+/-27 ms, p<0.05). The total duration of the muscular activation was shorter in unaware-NWR than in aware-NWR. The slopes of the tangential velocity-time curves were steeper for unaware-NWR than for aware-NWR (p=0.057). CONCLUSIONS: The results suggest that supraspinal regulation of NWR under different degrees of awareness involves the re-parameterization of selected spatiotemporal aspects of a pre-structured motor response.
Address Department of Physical Therapy, The Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-6411 ISBN Medium
Area Expedition Conference
Notes PMID:18063387 Approved no
Call Number Serial 34
Permanent link to this record
 

 
Author Biess, A.; Liebermann, D.G.; Flash, T.
Title A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics Type Journal Article
Year 2007 Publication The Journal of Neuroscience : the Official Journal of the Society for Neuroscience Abbreviated Journal J Neurosci
Volume 27 Issue 48 Pages 13045-13064
Keywords Analysis of Variance; Arm/physiology; Biomechanics; *Computer Simulation; Humans; *Models, Biological; Movement/*physiology; *Nonlinear Dynamics; Posture/physiology; Psychomotor Performance/*physiology; Range of Motion, Articular/physiology; Reaction Time/physiology; Space Perception/*physiology; Time Factors; Torque
Abstract Few computational models have addressed the spatiotemporal features of unconstrained three-dimensional (3D) arm motion. Empirical observations made on hand paths, speed profiles, and arm postures during point-to-point movements led to the assumption that hand path and arm posture are independent of movement speed, suggesting that the geometric and temporal properties of movements are decoupled. In this study, we present a computational model of 3D movements for an arm with four degrees of freedom based on the assumption that optimization principles are separately applied at the geometric and temporal levels of control. Geometric properties (path and posture) are defined in terms of geodesic paths with respect to the kinetic energy metric in the Riemannian configuration space. Accordingly, a geodesic path can be generated with less muscular effort than on any other, nongeodesic path, because the sum of all configuration-speed-dependent torques vanishes. The temporal properties of the movement (speed) are determined in task space by minimizing the squared jerk along the selected end-effector path. The integration of both planning levels into a single spatiotemporal representation simplifies the control of arm dynamics along geodesic paths and results in movements with near minimal torque change and minimal peak value of kinetic energy. Thus, the application of Riemannian geometry allows for a reconciliation of computational models previously proposed for the description of arm movements. We suggest that geodesics are an emergent property of the motor system through the exploration of dynamical space. Our data validated the predictions for joint trajectories, hand paths, final postures, speed profiles, and driving torques.
Address Department of Mathematics, Weizmann Institute of Science, 76100 Rehovot, Israel. armin.biess@weizmann.ac.il
Corporate Author Thesis
Publisher Place of Publication (up) Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0270-6474 ISBN Medium
Area Expedition Conference
Notes PMID:18045899 Approved no
Call Number Serial 35
Permanent link to this record
 

 
Author Liebermann, D.G.; Franks, I. M.
Title The use of feedback-based technologies in skill acquisition Type Book Chapter
Year 2004 Publication Notational analysis of Sport and Coaching Science Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher E & FN Spon Pub Place of Publication (up) Editor M. Hughes; I.M. Franks
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 45
Permanent link to this record