Records |
Author |
Frenkel-Toledo, S.; Liebermann, D.G.; Bentin, S.; Soroker, N. |
Title |
Dysfunction of the Human Mirror Neuron System in Ideomotor Apraxia: Evidence from Mu Suppression |
Type |
Journal Article |
Year |
2016 |
Publication |
Journal of Cognitive Neuroscience |
Abbreviated Journal |
J Cogn Neurosci |
Volume |
|
Issue |
|
Pages |
|
Keywords |
|
Abstract |
Stroke patients with ideomotor apraxia (IMA) have difficulties controlling voluntary motor actions, as clearly seen when asked to imitate simple gestures performed by the examiner. Despite extensive research, the neurophysiological mechanisms underlying failure to imitate gestures in IMA remain controversial. The aim of the current study was to explore the relationship between imitation failure in IMA and mirror neuron system (MNS) functioning. Mirror neurons were found to play a crucial role in movement imitation and in imitation-based motor learning. Their recruitment during movement observation and execution is signaled in EEG recording by suppression of the lower (8-10 Hz) mu range. We examined the modulation of EEG in this range in stroke patients with left (n = 21) and right (n = 15) hemisphere damage during observation of video clips showing different manual movements. IMA severity was assessed by the DeRenzi's standardized diagnostic test. Results showed that failure to imitate observed manual movements correlated with diminished mu suppression in patients with damage to the right inferior parietal lobule and in patients with damage to the right inferior frontal gyrus pars opercularis-areas where major components of the human MNS are assumed to reside. Voxel-based lesion symptom mapping revealed a significant impact on imitation capacity for the left inferior and superior parietal lobules and the left post central gyrus. Both left and right hemisphere damages were associated with imitation failure typical of IMA, yet a clear demonstration of relationship to the MNS was obtained only in the right hemisphere damage group. Suppression of the 8-10 Hz range was stronger in central compared with occipital sites, pointing to a dominant implication of mu rather than alpha rhythms. However, the suppression correlated with De Renzi's apraxia test scores not only in central but also in occipital sites, suggesting a multifactorial mechanism for IMA, with a possible impact for deranged visual attention (alpha suppression) beyond the effect of MNS damage (mu suppression). |
Address |
Loewenstein Hospital, Ra'anana, Israel |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0898-929X |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:26942323 |
Approved |
no |
Call Number |
|
Serial |
82 |
Permanent link to this record |
|
|
|
Author |
Frenkel-Toledo, S.; Bentin, S.; Perry, A.; Liebermann, D.G.; Soroker, N. |
Title |
Dynamics of the EEG Power in the Frequency and Spatial Domains During Observation and Execution of Manual Movements |
Type |
Journal Article |
Year |
2013 |
Publication |
Brain Research |
Abbreviated Journal |
Brain Res |
Volume |
1509 |
Issue |
|
Pages |
43-57 |
Keywords |
|
Abstract |
Mu suppression is the attenuation of EEG power in the alpha frequency range (8-12Hz) while executing or observing a motor action. Whereas typically observed at central scalp sites, there are diverging reports about the extent of the attenuation over the cortical mantle, its exact frequency range and the specificity of this phenomenon. We investigated the modulation of EEG oscillations in frequency-bands from 4 to 12Hz at frontal, central, parietal and occipital sites during the execution of manual movements and during observation of similar actions from allocentric (i.e., facing the actor) and egocentric (i.e., seeing the actor from behind) viewpoints. Suppression was determined relative to observation of a non-biological movement. Action observation elicited greater suppression in the lower (8-10Hz) compared to the higher mu range (10-12Hz), and greater suppression in the entire 4-12Hz range at frontal and central sites compared to parietal and occipital sites. In addition, suppression tended to be greater during observation of a motor action from allocentric compared to egocentric viewpoints. During execution of movement, suppression of the EEG occurred primarily in the higher alpha range and was absent at occipital sites. In the theta range (4-8Hz), the EEG amplitude was suppressed during action observation and execution. The results suggest a functional distinction between modulation of mu and alpha rhythms, and between the higher and lower ranges of the mu rhythms. The activity of the presumed human mirror neuron system seems primarily evident in the lower mu range and in the theta range. |
Address |
Sackler Faculty of Medicine, Tel Aviv University, Israel; Department of Neurological Rehabilitation, Loewenstein Hospital, Raanana, Israel. Electronic address: silvi197@bezeqint.net |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0006-8993 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:23500633 |
Approved |
no |
Call Number |
|
Serial |
68 |
Permanent link to this record |
|
|
|
Author |
Berman, S.; Liebermann, D.G.; McIntyre, J. |
Title |
Constrained Motion Control on a Hemispherical Surface – Path Planning |
Type |
Journal Article |
Year |
2014 |
Publication |
Journal of Neurophysiology |
Abbreviated Journal |
J Neurophysiol |
Volume |
111 |
Issue |
5 |
Pages |
954-968 |
Keywords |
Constrained motion; geodesics; path planning |
Abstract |
Surface-constrained motion, i.e., motion constraint by a rigid surface, is commonly found in daily activities. The current work investigates the choice of hand paths constrained to a concave hemispherical surface. To gain insight regarding the paths and their relationship with task dynamics, we simulated various control policies. The simulations demonstrated that following a geodesic path is advantageous not only in terms of path length, but also in terms of motor planning and sensitivity to motor command errors. These stem from the fact that the applied forces lie in a single plane (that of the geodesic path itself). To test whether human subjects indeed follow the geodesic, and to see how such motion compares to other paths, we recorded movements in a virtual haptic-visual environment from eleven healthy subjects. The task was comprised of point-to-point motion between targets at two elevations (30 degrees and 60 degrees ). Three typical choices of paths were observed from a frontal plane projection of the paths: circular arcs, straight lines, and arcs close to the geodesic path for each elevation. Based on the measured hand paths, we applied k-means blind separation to divide the subjects into three groups and compared performance indicators. The analysis confirmed that subjects who followed paths closest to the geodesic produced faster and smoother movements, compared to the others. The 'better' performance reflects the dynamical advantages of following the geodesic path, as shown by the simulations, and may also reflect invariant features of the control policies used to produce such a surface-constrained motion. |
Address |
Ben-Gurion University of the Negev |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0022-3077 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:24259548 |
Approved |
no |
Call Number |
|
Serial |
72 |
Permanent link to this record |
|
|
|
Author |
Flash, T.; Richardson, M. E.; Handzel, A. A.; Liebermann, D. G. |
Title |
Computational Models and Geometric Approaches in Arm Trajectory Control Studies |
Type |
Book Chapter |
Year |
2003 |
Publication |
Progress in Motor Control III: From Basic Science to Applications |
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
|
Keywords |
|
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
Human Kinetics |
Place of Publication |
Champaign, Il |
Editor |
M. L. Latash; M. F. Levin |
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
44 |
Permanent link to this record |
|
|
|
Author |
Levin, M.F.; Liebermann, D.G.; Parmet, Y.; Berman, S. |
Title |
Compensatory Versus Noncompensatory Shoulder Movements Used for Reaching in Stroke |
Type |
Journal Article |
Year |
2015 |
Publication |
Neurorehabilitation and Neural Repair |
Abbreviated Journal |
Neurorehabil Neural Repair |
Volume |
|
Issue |
|
Pages |
|
Keywords |
adaptation; arm movement; compensation; kinematics; recovery; rehabilitation |
Abstract |
BACKGROUND: The extent to which the upper-limb flexor synergy constrains or compensates for arm motor impairment during reaching is controversial. This synergy can be quantified with a minimal marker set describing movements of the arm-plane. OBJECTIVES: To determine whether and how (a) upper-limb flexor synergy in patients with chronic stroke contributes to reaching movements to different arm workspace locations and (b) reaching deficits can be characterized by arm-plane motion. METHODS: Sixteen post-stroke and 8 healthy control subjects made unrestrained reaching movements to targets located in ipsilateral, central, and contralateral arm workspaces. Arm-plane, arm, and trunk motion, and their temporal and spatial linkages were analyzed. RESULTS: Individuals with moderate/severe stroke used greater arm-plane movement and compensatory trunk movement compared to those with mild stroke and control subjects. Arm-plane and trunk movements were more temporally coupled in stroke compared with controls. Reaching accuracy was related to different segment and joint combinations for each target and group: arm-plane movement in controls and mild stroke subjects, and trunk and elbow movements in moderate/severe stroke subjects. Arm-plane movement increased with time since stroke and when combined with trunk rotation, discriminated between different subject groups for reaching the central and contralateral targets. Trunk movement and arm-plane angle during target reaches predicted the subject group. CONCLUSIONS: The upper-limb flexor synergy was used adaptively for reaching accuracy by patients with mild, but not moderate/severe stroke. The flexor synergy, as parameterized by the amount of arm-plane motion, can be used by clinicians to identify levels of motor recovery in patients with stroke. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1545-9683 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:26510934 |
Approved |
no |
Call Number |
|
Serial |
79 |
Permanent link to this record |