|   | 
Details
   web
Records
Author Melzer, I.; Liebermann, D.G.; Krasovsky, T.; Oddsson, L.I.E.
Title Cognitive load affects lower limb force-time relations during voluntary rapid stepping in healthy old and young adults Type Journal Article
Year 2010 Publication The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences Abbreviated Journal J Gerontol A Biol Sci Med Sci
Volume (up) 65 Issue 4 Pages 400-406
Keywords *Accidental Falls; Adult; Aged; Aged, 80 and over; Aging/*physiology; Attention/physiology; Cognition/*physiology; Gait/*physiology; Humans; Postural Balance/*physiology; Reaction Time
Abstract BACKGROUND: Quick step execution may prevent falls when balance is lost; adding a concurrent task delays this function. We investigate whether push-off force-time relations during the execution of rapid voluntary stepping is affected by a secondary task in older and young adults. METHODS: Nineteen healthy older adults and 12 young adults performed rapid voluntary stepping under single- and dual-task conditions. Peak power, peak force, and time to peak force during preparatory and swing phases of stepping were extracted from center of pressure and ground reaction force data. RESULTS: For dual-task condition compared with single-task condition, older adults show a longer time to reach peak force during the preparation and swing phases compared with young adults (approximately 25% vs approximately 10%, respectively). Peak power and peak force were not affected by a concurrent attention-demanding task. CONCLUSION: Older adults have difficulty allocating sufficient attention for fast muscle recruitment when concurrently challenged by an attention-demanding task.
Address Department of Physical Therapy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1079-5006 ISBN Medium
Area Expedition Conference
Notes PMID:19939911 Approved no
Call Number Serial 50
Permanent link to this record
 

 
Author Hoffman, J.R.; Liebermann, D.; Gusis, A.
Title Relationship of leg strength and power to ground reaction forces in both experienced and novice jump trained personnel Type Journal Article
Year 1997 Publication Aviation, Space, and Environmental Medicine Abbreviated Journal Aviat Space Environ Med
Volume (up) 68 Issue 8 Pages 710-714
Keywords *Aerospace Medicine; *Aviation; Biomechanics; Humans; Leg/*physiology; Male; Military Personnel/*education; *Physical Education and Training; Physical Fitness/*physiology; Range of Motion, Articular; Wounds and Injuries/etiology/*prevention & control
Abstract METHODS: There were 14 male soldiers who participated in this study examining the relationship of leg strength and power on landing performance. Subjects were separated into two groups. The first group (E, n = 7) were parachute training instructors and highly experienced in parachute jumping. The second group of subjects (N, n = 7) had no prior parachute training experience and were considered novice jumpers. All subjects were tested for one-repetition maximum (1 RM) squat strength and maximal jump power. Ground reaction forces (GRF) and the time to peak force (TPF) at landing were measured from jumps at four different heights (95 cm, 120 cm, 145 cm, and 170 cm). All jumps were performed from a customized jump platform onto a force plate. RESULTS: No differences were seen between E and N in either IRM squat strength or in MJP. In addition, no differences were seen between the groups for time to peak force at any jump height. However, significantly greater GRF were observed in E compared to N. Moderate to high correlations between maximal jump power and GRF (r values ranging from 0.62-0.93) were observed in E. Although maximal jump power and the TPF was significantly correlated (r = -0.89) at only 120 cm for E, it was interesting to note that the correlations between MJP and the time to peak force in E were all negative and that the correlations between these variables in N were all positive. CONCLUSIONS: These results suggest that experienced parachutists may use a different landing strategy than novice jumpers. This difference may be reflected by differences in GRF generated during impact and a more efficient utilization of muscle power during the impact phase of the landing.
Address Aeromedical Center, Physiological Training Unit, Israel Air Force, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0095-6562 ISBN Medium
Area Expedition Conference
Notes PMID:9262813 Approved no
Call Number Serial 60
Permanent link to this record
 

 
Author Biess, A.; Flash, T.; Liebermann, D.G.
Title Riemannian geometric approach to human arm dynamics, movement optimization, and invariance Type Journal Article
Year 2011 Publication Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics Abbreviated Journal Phys Rev E Stat Nonlin Soft Matter Phys
Volume (up) 83 Issue 3 Pt 1 Pages 031927
Keywords Arm/*physiology; Biomechanics; Computer Simulation; Humans; Kinetics; Male; Models, Biological; Models, Statistical; Models, Theoretical; *Movement; Psychomotor Performance/*physiology; Range of Motion, Articular/physiology; Reaction Time/physiology; Space Perception/*physiology; Torque
Abstract We present a generally covariant formulation of human arm dynamics and optimization principles in Riemannian configuration space. We extend the one-parameter family of mean-squared-derivative (MSD) cost functionals from Euclidean to Riemannian space, and we show that they are mathematically identical to the corresponding dynamic costs when formulated in a Riemannian space equipped with the kinetic energy metric. In particular, we derive the equivalence of the minimum-jerk and minimum-torque change models in this metric space. Solutions of the one-parameter family of MSD variational problems in Riemannian space are given by (reparameterized) geodesic paths, which correspond to movements with least muscular effort. Finally, movement invariants are derived from symmetries of the Riemannian manifold. We argue that the geometrical structure imposed on the arm's configuration space may provide insights into the emerging properties of the movements generated by the motor system.
Address Bernstein Center for Computational Neuroscience, DE-37073 Gottingen, Germany. armin@nld.ds.mpg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755 ISBN Medium
Area Expedition Conference
Notes PMID:21517543 Approved no
Call Number Serial 29
Permanent link to this record
 

 
Author Frenkel-Toledoa, S.; Bentin, S.; Perry, A.; Liebermann, D. G.; Soroker, N.
Title Mirror-neuron system recruitment by action observation: Effects of focal brain damage on mu suppression Type Journal Article
Year 2014 Publication NeuroImage Abbreviated Journal
Volume (up) 87 Issue Pages 127-137
Keywords
Abstract Mu suppression is the attenuation of EEG power in the alpha frequency range (8-12 Hz), recorded over the sensorimotor cortex during execution and observation of motor actions. Based on this dual characteristic it is thought to signalize activation of a human analogue of the mirror neuron system (MNS) found in macaque monkeys, though much uncertainty remains concerning its specificity and full significance. To further explore the hypothesized relationship between mu suppression and MNS activation, we investigated how it is affected by damage to cortical regions, including areas where the MNS is thought to reside. EEG was recorded in 33 first-event stroke patients during observation of video-clips showing reaching and grasping hand movements. We examined the modulation of EEG oscillations at central and occipital sites, and analyzed separately the lower (8-10 Hz) and higher (10-12 Hz) segments of the alpha/mu range. Suppression was determined relative to observation of a non-biological movement. Normalized lesion data were used to investigate how damage to regions of the fronto-parietal cortex affects the pattern of suppression. The magnitude of mu suppression during action observation was significantly reduced in the affected hemisphere compared to the unaffected hemisphere. Differences between the hemispheres were significant at central (sensorimotor) sites but not at occipital (visual) sites. Total hemispheric volume loss did not correlate with mu suppression. Suppression in the lower mu range in the unaffected hemisphere (C3) correlated with lesion extent within the right inferior parietal cortex. Our lesion study supports the role of mu suppression as a marker of MNS activation, as suggested by findings gathered in previous studies in normal subjects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 71
Permanent link to this record
 

 
Author Berman, S.; Liebermann, D.G.; McIntyre, J.
Title Constrained Motion Control on a Hemispherical Surface – Path Planning Type Journal Article
Year 2014 Publication Journal of Neurophysiology Abbreviated Journal J Neurophysiol
Volume (up) 111 Issue 5 Pages 954-968
Keywords Constrained motion; geodesics; path planning
Abstract Surface-constrained motion, i.e., motion constraint by a rigid surface, is commonly found in daily activities. The current work investigates the choice of hand paths constrained to a concave hemispherical surface. To gain insight regarding the paths and their relationship with task dynamics, we simulated various control policies. The simulations demonstrated that following a geodesic path is advantageous not only in terms of path length, but also in terms of motor planning and sensitivity to motor command errors. These stem from the fact that the applied forces lie in a single plane (that of the geodesic path itself). To test whether human subjects indeed follow the geodesic, and to see how such motion compares to other paths, we recorded movements in a virtual haptic-visual environment from eleven healthy subjects. The task was comprised of point-to-point motion between targets at two elevations (30 degrees and 60 degrees ). Three typical choices of paths were observed from a frontal plane projection of the paths: circular arcs, straight lines, and arcs close to the geodesic path for each elevation. Based on the measured hand paths, we applied k-means blind separation to divide the subjects into three groups and compared performance indicators. The analysis confirmed that subjects who followed paths closest to the geodesic produced faster and smoother movements, compared to the others. The 'better' performance reflects the dynamical advantages of following the geodesic path, as shown by the simulations, and may also reflect invariant features of the control policies used to produce such a surface-constrained motion.
Address Ben-Gurion University of the Negev
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3077 ISBN Medium
Area Expedition Conference
Notes PMID:24259548 Approved no
Call Number Serial 72
Permanent link to this record