Records |
Author |
Carmeli E.; Liebermann, D.G. |
Title |
The Function of the Aging Hand |
Type |
Book Chapter |
Year |
2007 |
Publication |
The Geriatric Rehabilitation Manual |
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
|
Keywords |
|
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier |
Place of Publication |
NY |
Editor |
T. L. Kauffman; M. Moran; J. Barr |
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
46 |
Permanent link to this record |
|
|
|
Author |
Liebermann, D.G.; Franks I.M. |
Title |
Video-feedback and information technologies |
Type |
Book Chapter |
Year |
2008 |
Publication |
Essentials of notational analysis |
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
|
Keywords |
|
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
E & FN Spon Pub |
Place of Publication |
|
Editor |
I.M. Franks; M. Hughes |
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
48 |
Permanent link to this record |
|
|
|
Author |
Liebermann, D.G.; Buchman, A.S.; Franks, I.M. |
Title |
Enhancement of motor rehabilitation through the use of information technologies |
Type |
Journal Article |
Year |
2006 |
Publication |
Clinical Biomechanics (Bristol, Avon) |
Abbreviated Journal |
Clin Biomech (Bristol, Avon) |
Volume |
21 |
Issue |
1 |
Pages |
8-20 |
Keywords |
Biotechnology/*methods; Humans; Medical Informatics/*methods; Motion Therapy, Continuous Passive/*methods; Movement Disorders/*rehabilitation; Musculoskeletal Manipulations/methods; Rehabilitation/*methods; Robotics/*methods; Therapy, Computer-Assisted/*methods |
Abstract |
The recent development of information technologies has dramatically increased the tools available for facilitating motor rehabilitation. This review focuses on technologies which can be used to augment movement-related information both to patients as well as to their therapists. A brief outline of the motor system emphasizes the role of spinal motor neurons in the control of voluntary movement and rehabilitative efforts. Technologies which induce passive motion to stimulate spinal motor output as well as technologies that stimulate active voluntary movements are discussed. Finally, we review technologies and notational methods that can be used to quantify and assess the quality of movement for evaluating the efficacy of motor rehabilitation efforts. We conclude that stronger evidence is necessary to determine the applicability of the wide range of technologies now available to clinical rehabilitation efforts. |
Address |
Department of Physical Therapy, Sackler Faculty of Medicine, University of Tel Aviv, Israel. dlieberm@post.tau.ac.il |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0268-0033 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:16198463 |
Approved |
no |
Call Number |
|
Serial |
49 |
Permanent link to this record |
|
|
|
Author |
Liebermann, D.G.; Goodman, D. |
Title |
Pre-landing muscle timing and post-landing effects of falling with continuous vision and in blindfold conditions |
Type |
Journal Article |
Year |
2007 |
Publication |
Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology |
Abbreviated Journal |
J Electromyogr Kinesiol |
Volume |
17 |
Issue |
2 |
Pages |
212-227 |
Keywords |
Adult; Analysis of Variance; Biomechanics; *Blindness; *Electromyography; Humans; Joints/physiology; Lower Extremity/physiology; Male; Movement/*physiology; Muscle, Skeletal/*physiology; Orientation; *Vision, Ocular |
Abstract |
The present study examined the effect of continuous vision and its occlusion in timing of pre-landing actions during free falls. When vision is occluded, muscle activation is hypothesized to start relative to onset of the fall. However, when continuous vision is available onset of action is hypothesized to be relative to the moment of touchdown. Six subjects performed 6 randomized sets of 6 trials after becoming familiar with the task. The 36 trials were divided in 2 visual conditions (vision and blindfold) and 3 heights of fall (15, 45 and 75 cm). EMG activity was recorded from the gastrocnemius and rectus femoris muscles during the falls. The latency of onset (L(o)) and the lapse from EMG onset to touchdown (T(c)) were obtained from these muscles. Vertical forces were recorded to assess the effects of pre-landing activity on the impacts at collision with and without continuous vision. Peak amplitude (F(max)), time to peak (T(max)) and peak impulse normalized to momentum (I(norm)) were used as outcome measures. Within flight time ranges of approximately 50-400 ms, the results showed that L(o) and T(c) follow a similar linear trend whether continuous vision was available or occluded. However, the variability of T(c) for each of the muscles was larger in the vision occluded condition. Analyses of variance showed that the rectus femoris muscle started consistently earlier in no vision trials. Finally, impact forces were not different in vision or blindfold conditions, and thus, they were not affected by minor differences in the timing of muscles prior to landing. Thus, it appears that knowing the surroundings before falling may help to reduce the need for a continuous visual input. The relevance of such input cannot be ruled out for falls from high landing heights, but cognitive factors (e.g., attention to specific cues and anticipation of a fall) may play a dominant role in timing actions during short duration falls encountered daily. |
Address |
Physical Therapy Department, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel. dlieberm@post.tau.ac.il <dlieberm@post.tau.ac.il> |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1050-6411 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:16600637 |
Approved |
no |
Call Number |
|
Serial |
37 |
Permanent link to this record |
|
|
|
Author |
Merdler, T.; Liebermann, D.G.; Levin, M.F.; Berman, S. |
Title |
Arm-plane representation of shoulder compensation during pointing movements in patients with stroke |
Type |
Journal Article |
Year |
2013 |
Publication |
Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology |
Abbreviated Journal |
J Electromyogr Kinesiol |
Volume |
23 |
Issue |
4 |
Pages |
938–947 |
Keywords |
Kinematics; Arm movement; Rehabilitation |
Abstract |
Improvements in functional motor activities are often accompanied by motor compensations to overcome persistent motor impairment in the upper limb. Kinematic analysis is used to objectively quantify movement patterns including common motor compensations such as excessive trunk displacement during reaching. However, a common motor compensation to assist reaching, shoulder abduction, is not adequately characterized by current motion analysis approaches. We apply the arm-plane representation that accounts for the co-variation between movements of the whole arm, and investigate its ability to identify and quantify compensatory arm movements in stroke subjects when making forward arm reaches. This method has not been previously applied to the analysis of motion deficits. Sixteen adults with right post-stroke hemiparesis and eight healthy age-matched controls reached in three target directions (14 trials/target; sampling rate: 100Hz). Arm-plane movement was validated against endpoint, joint, and trunk kinematics and compared between groups. In stroke subjects, arm-plane measures were correlated with arm impairment (Fugl-Meyer Assessment) and ability (Box and Blocks) scores and were more sensitive than clinical measures to detect mild motor impairment. Arm-plane motion analysis provides new information about motor compensations involving the co-variation of shoulder and elbow movements that may help to understand the underlying motor deficits in patients with stroke. |
Address |
Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1050-6411 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:23566477 |
Approved |
no |
Call Number |
|
Serial |
69 |
Permanent link to this record |