|   | 
Details
   web
Records
Author Liebermann, D.G.; Hoffman, J.R.
Title Timing of preparatory landing responses as a function of availability of optic flow information Type Journal Article
Year 2005 Publication Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology Abbreviated Journal J Electromyogr Kinesiol
Volume 15 Issue 1 Pages 120-130
Keywords Adult; Cues; Electromyography; Humans; Male; Movement/physiology; Muscle, Skeletal/*physiology; Posture/physiology; Psychomotor Performance/*physiology; Vision, Ocular/*physiology
Abstract This study investigated temporal patterns of EMG activity during self-initiated falls with different optic flow information ('gaze directions'). Onsets of EMG during the flight phase were monitored from five experienced volunteers that completed 72 landings in three gaze directions (downward, mid-range and horizontal) and six heights of fall (10-130 cm). EMG recordings were obtained from the right gastrocnemius, tibialis anterior, biceps femoris and rectus femoris muscles, and used to determine the latency of onset (L(o)) and the perceived time to contact (T(c)). Impacts at touchdown were also monitored using as estimates the major peak of the vertical ground reaction forces (F(max)) normalized to body mass, time to peak (T(max)), peak impulse (I(norm)) normalized to momentum, and rate of change of force (dF(max)/dt). Results showed that L(o) was longer as heights of fall increased, but remained within a narrow time-window at >50 cm landings. No significant differences in L(o) were observed when gaze direction was changed. The relationship between T(c) and flight time followed a linear trend regardless of gaze direction. Gaze direction did not significantly affect the landing impacts. In conclusion, availability of optic flow during landing does not play a major role in triggering the preparatory muscle actions in self-initiated falls. Once a structured landing plan has been acquired, the relevant muscles respond relative to the start of the fall.
Address Department of Physical Therapy, Sackler Faculty of Medicine, Stanley Steyer School of Health Professions, University of Tel Aviv, Ramat Aviv, 69978 Tel Aviv, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 1050-6411 ISBN Medium
Area Expedition Conference
Notes PMID:15642660 Approved no
Call Number Serial 39
Permanent link to this record
 

 
Author Liebermann, D.G.; Katz, L.; Hughes, M.D.; Bartlett, R.M.; McClements, J.; Franks, I.M.
Title Advances in the application of information technology to sport performance Type Journal Article
Year 2002 Publication Journal of Sports Sciences Abbreviated Journal J Sports Sci
Volume 20 Issue 10 Pages 755-769
Keywords *Biofeedback, Psychology; *Computer Simulation; Humans; Models, Biological; Physical Education and Training/*methods; Psychomotor Performance/physiology; Sports Medicine/methods; *Task Performance and Analysis; Videotape Recording
Abstract This paper overviews the diverse information technologies that are used to provide athletes with relevant feedback. Examples taken from various sports are used to illustrate selected applications of technology-based feedback. Several feedback systems are discussed, including vision, audition and proprioception. Each technology described here is based on the assumption that feedback would eventually enhance skill acquisition and sport performance and, as such, its usefulness to athletes and coaches in training is critically evaluated.
Address Department of Physical Therapy, Sackler Faculty of Medicine, University of Tel Aviv, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 0264-0414 ISBN Medium
Area Expedition Conference
Notes PMID:12363293 Approved no
Call Number Serial 40
Permanent link to this record
 

 
Author Goodman, D.; Liebermann, D.G.
Title Time-to-contact as a determiner of action: vision and motor control Type Book Chapter
Year 1992 Publication Vision and Motor Control Abbreviated Journal
Volume Issue Pages 335-349
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Elsevier Pub. Co Place of Publication Amsterdam, Holland Editor D. Elliott; J. Proteau
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 43
Permanent link to this record
 

 
Author Melzer, I.; Liebermann, D.G.; Krasovsky, T.; Oddsson, L.I.E.
Title Cognitive load affects lower limb force-time relations during voluntary rapid stepping in healthy old and young adults Type Journal Article
Year 2010 Publication The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences Abbreviated Journal J Gerontol A Biol Sci Med Sci
Volume 65 Issue 4 Pages 400-406
Keywords *Accidental Falls; Adult; Aged; Aged, 80 and over; Aging/*physiology; Attention/physiology; Cognition/*physiology; Gait/*physiology; Humans; Postural Balance/*physiology; Reaction Time
Abstract BACKGROUND: Quick step execution may prevent falls when balance is lost; adding a concurrent task delays this function. We investigate whether push-off force-time relations during the execution of rapid voluntary stepping is affected by a secondary task in older and young adults. METHODS: Nineteen healthy older adults and 12 young adults performed rapid voluntary stepping under single- and dual-task conditions. Peak power, peak force, and time to peak force during preparatory and swing phases of stepping were extracted from center of pressure and ground reaction force data. RESULTS: For dual-task condition compared with single-task condition, older adults show a longer time to reach peak force during the preparation and swing phases compared with young adults (approximately 25% vs approximately 10%, respectively). Peak power and peak force were not affected by a concurrent attention-demanding task. CONCLUSION: Older adults have difficulty allocating sufficient attention for fast muscle recruitment when concurrently challenged by an attention-demanding task.
Address Department of Physical Therapy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 1079-5006 ISBN Medium
Area Expedition Conference
Notes PMID:19939911 Approved no
Call Number Serial 50
Permanent link to this record
 

 
Author Melzer, I.; Krasovsky, T.; Oddsson, L.I.E.; Liebermann, D.G.
Title Age-related differences in lower-limb force-time relation during the push-off in rapid voluntary stepping Type Journal Article
Year 2010 Publication Clinical Biomechanics (Bristol, Avon) Abbreviated Journal Clin Biomech (Bristol, Avon)
Volume 25 Issue 10 Pages 989-994
Keywords Accidental Falls/prevention & control; Age Factors; Aged; Aged, 80 and over; Aging/physiology; *Biomechanics; Female; Gait/*physiology; Humans; Male; *Postural Balance; Walking/*physiology
Abstract BACKGROUND: This study investigated the force-time relationship during the push-off stage of a rapid voluntary step in young and older healthy adults, to study the assumption that when balance is lost a quick step may preserve stability. The ability to achieve peak propulsive force within a short time is critical for the performance of such a quick powerful step. We hypothesized that older adults would achieve peak force and power in significantly longer times compared to young people, particularly during the push-off preparatory phase. METHODS: Fifteen young and 15 older volunteers performed rapid forward steps while standing on a force platform. Absolute anteroposterior and body weight normalized vertical forces during the push-off in the preparation and swing phases were used to determine time to peak and peak force, and step power. Two-way analyses of variance ('Group' [young-older] by 'Phase' [preparation-swing]) were used to assess our hypothesis (P </= 0.05). FINDINGS: Older people exerted lower peak forces (anteroposterior and vertical) than young adults, but not necessarily lower peak power. More significantly, they showed a longer time to peak force, particularly in the vertical direction during the preparation phase. INTERPRETATIONS: Older adults generate propulsive forces slowly and reach lower magnitudes, mainly during step preparation. The time to achieve a peak force and power, rather than its actual magnitude, may account for failures in quickly performing a preventive action. Such delay may be associated with the inability to react and recruit muscles quickly. Thus, training elderly to step fast in response to relevant cues may be beneficial in the prevention of falls.
Address Department of Physical Therapy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 0268-0033 ISBN Medium
Area Expedition Conference
Notes PMID:20724044 Approved no
Call Number Serial 51
Permanent link to this record