|   | 
Details
   web
Records
Author Liebermann, D.G.; Goodman, D.
Title Pre-landing muscle timing and post-landing effects of falling with continuous vision and in blindfold conditions Type Journal Article
Year 2007 Publication Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology Abbreviated Journal J Electromyogr Kinesiol
Volume 17 Issue 2 Pages 212-227
Keywords Adult; Analysis of Variance; Biomechanics; *Blindness; *Electromyography; Humans; Joints/physiology; Lower Extremity/physiology; Male; Movement/*physiology; Muscle, Skeletal/*physiology; Orientation; *Vision, Ocular
Abstract The present study examined the effect of continuous vision and its occlusion in timing of pre-landing actions during free falls. When vision is occluded, muscle activation is hypothesized to start relative to onset of the fall. However, when continuous vision is available onset of action is hypothesized to be relative to the moment of touchdown. Six subjects performed 6 randomized sets of 6 trials after becoming familiar with the task. The 36 trials were divided in 2 visual conditions (vision and blindfold) and 3 heights of fall (15, 45 and 75 cm). EMG activity was recorded from the gastrocnemius and rectus femoris muscles during the falls. The latency of onset (L(o)) and the lapse from EMG onset to touchdown (T(c)) were obtained from these muscles. Vertical forces were recorded to assess the effects of pre-landing activity on the impacts at collision with and without continuous vision. Peak amplitude (F(max)), time to peak (T(max)) and peak impulse normalized to momentum (I(norm)) were used as outcome measures. Within flight time ranges of approximately 50-400 ms, the results showed that L(o) and T(c) follow a similar linear trend whether continuous vision was available or occluded. However, the variability of T(c) for each of the muscles was larger in the vision occluded condition. Analyses of variance showed that the rectus femoris muscle started consistently earlier in no vision trials. Finally, impact forces were not different in vision or blindfold conditions, and thus, they were not affected by minor differences in the timing of muscles prior to landing. Thus, it appears that knowing the surroundings before falling may help to reduce the need for a continuous visual input. The relevance of such input cannot be ruled out for falls from high landing heights, but cognitive factors (e.g., attention to specific cues and anticipation of a fall) may play a dominant role in timing actions during short duration falls encountered daily.
Address (up) Physical Therapy Department, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel. dlieberm@post.tau.ac.il <dlieberm@post.tau.ac.il>
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-6411 ISBN Medium
Area Expedition Conference
Notes PMID:16600637 Approved no
Call Number Serial 37
Permanent link to this record
 

 
Author Liebermann, D.G.; Levin, M.F.; McIntyre, J.; Weiss, P.L.; Berman, S.
Title Arm path fragmentation and spatiotemporal features of hand reaching in healthy subjects and stroke patients Type Journal Article
Year 2010 Publication Conference Proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference Abbreviated Journal Conf Proc IEEE Eng Med Biol Soc
Volume 2010 Issue Pages 5242-5245
Keywords Aged; Aged, 80 and over; Analysis of Variance; Arm/*physiology; Biomechanics/physiology; Female; Hand/*physiology; *Health; Humans; Male; Middle Aged; Movement/*physiology; Posture/physiology; Principal Component Analysis; Stroke/*physiopathology; Time Factors
Abstract Arm motion in healthy humans is characterized by smooth and relatively short paths. The current study focused on 3D reaching in stroke patients. Sixteen right-hemiparetic stroke patients and 8 healthy adults performed 42 reaching movements towards 3 visual targets located at an extended arm distance. Performance was assessed in terms of spatial and temporal features of the movement; i.e., hand path, arm posture and smoothness. Differences between groups and within subjects were hypothesized for spatial and temporal aspects of reaching under the assumption that both are independent. As expected, upper limb motion of patients was characterized by longer and jerkier hand paths and slower speeds. Assessment of the number of sub-movements within each movement did not clearly discriminate between groups. Principal component analyses revealed specific clusters of either spatial or temporal measures, which accounted for a large proportion of the variance in patients but not in healthy controls. These findings support the notion of a separation between spatial and temporal features of movement. Stroke patients may fail to integrate the two aspects when executing reaching movements towards visual targets.
Address (up) Physical Therapy Dept., Sackler Faculty of Medicine, Tel Aviv University, 69978 Israel. dlieberm@post.tau.ac.il
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-170X ISBN Medium
Area Expedition Conference
Notes PMID:21096047 Approved no
Call Number Serial 30
Permanent link to this record
 

 
Author Liebermann, D.G.; Goodman, D.
Title Effects of visual guidance on the reduction of impacts during landings Type Journal Article
Year 1991 Publication Ergonomics Abbreviated Journal Ergonomics
Volume 34 Issue 11 Pages 1399-1406
Keywords Adult; Analysis of Variance; Biomechanics; *Cues; Humans; Male; Motor Activity/*physiology; Psychomotor Performance/physiology; Vision, Ocular/*physiology
Abstract While a common view is that vision is essential to motor performance, some recent studies have shown that continuous visual guidance may not always be required within certain time constraints. This study investigated a landing-related task (self-released falls) to assess the extent to which visual information enhances the ability to reduce the impacts at touchdown. Six individuals performed six blocked trials from four height categories in semi-counterbalanced order (5-10, 20-25, 60-65, and 90-95 cm) in vision and no-vision conditions randomly assigned. A series of two-way ANOVA with repeated measures were carried out separately on each dependent variable collapsed over six trials. The results indicated that vision during the flight did not produce softer landings. Indeed, in analysing the first peak (PFP) a main effect for visual condition was revealed in that the mean amplitude was slightly higher when vision was available (F(1,5) = 6.57; p less than 0.05), thus implicating higher forces at impact. The results obtained when the time to the first peak (TFP) was applied showed no significant differences between conditions (F(1,5) less than 1). As expected, in all cases, the analyses yielded significant main effects for the height categories factor. It appears that during self-initiated falls in which the environmental cues are known before the event, visual guidance is not necessary in order to adopt a softer landing strategy.
Address (up) Research Department, Wingate Institute, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0014-0139 ISBN Medium
Area Expedition Conference
Notes PMID:1800107 Approved no
Call Number Serial 55
Permanent link to this record
 

 
Author Falk, B.; Eliakim, A.; Dotan, R.; Liebermann, D.G.; Regev, R.; Bar-Or, O.
Title Birth weight and physical ability in 5- to 8-yr-old healthy children born prematurely Type Journal Article
Year 1997 Publication Medicine and Science in Sports and Exercise Abbreviated Journal Med Sci Sports Exerc
Volume 29 Issue 9 Pages 1124-1130
Keywords *Birth Weight; Child; Child Development/physiology; Child, Preschool; Female; Follow-Up Studies; Humans; Infant, Newborn; *Infant, Premature; Male; *Motor Skills; *Physical Fitness
Abstract Recent advances in perinatal care have resulted in increased survival rates of extremely small and immature newborns. This has resulted in some neurodevelopmental impairment. The purpose of this study was to quantitatively evaluate and compare neuromuscular performance in children born prematurely at various levels of subnormal birth weight (BW). Subjects were 5- to 8-yr-old children born prematurely at different levels of subnormal BW (535-1760 g, N = 22, PM), and age-matched controls born at full term (> 2500 g, N = 15, CON). None of the subjects had any clinically defined neuromuscular disabilities. Body mass (BM) of PM was lower than that of CON (18.3 +/- 2.7 vs 21.7 +/- 3.8 kg) with no difference in height or sum of 4 skinfolds. Peak mechanical power output determined with a 15-s modified Wingate Anaerobic Test and corrected for BM was lower (P = 0.07) in PM than in CON (5.11 +/- 1.07 vs 5.94 +/- 1.00 W.kg-1). This was especially noticeable in children born at extremely low BW (ELBW, < 1000 g, 4.49 +/- 1.04 W.kg-1, P < 0.01). Peak power, determined in a force-plate vertical jump, corrected for BM was lower in PM vs CON (25.5 +/- 5.4 vs 30.8 +/- 5.2 W.kg-1, respectively P = 0.01), especially in the ELBW group (20.0 +/- 5.5 W.kg-1). Similarly, the elapsed time between peak velocity and actual jump take-off was longer in PM than in CON (41.2 +/- 9.4 vs 35.8 +/- 5.8 ms, respectively, P = 0.04). No differences were observed in peak force. The results suggest that performance deficiencies of prematurely-born children may be a result of inferior inter-muscular coordination. The precise neuromotor factors responsible for this should be identified by future research.
Address (up) Ribstein Center for Research and Sport Medicine Sciences, Wingate Institute, Netanya, Israel. bfalk@ccsg.tau.ac.il
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0195-9131 ISBN Medium
Area Expedition Conference
Notes PMID:9309621 Approved no
Call Number Serial 64
Permanent link to this record
 

 
Author Issurin, V.B.; Liebermann, D.G.; Tenenbaum, G.
Title Effect of vibratory stimulation training on maximal force and flexibility Type
Year 1994 Publication Journal of Sports Sciences Abbreviated Journal J Sports Sci
Volume 12 Issue 6 Pages 561-566
Keywords Adult; Humans; Male; Muscle Contraction/physiology; Muscle, Skeletal/*physiology; *Physical Education and Training; Vibration/*therapeutic use
Abstract In this study, we investigated a new method of training for maximal strength and flexibility, which included exertion with superimposed vibration (vibratory stimulation, VS) on target muscles. Twenty-eight male athletes were divided into three groups, and trained three times a week for 3 weeks in one of the following conditions: (A) conventional exercises for strength of the arms and VS stretching exercises for the legs; (B) VS strength exercises for the arms and conventional stretching exercises for the legs; (C) irrelevant training (control group). The vibration was applied at 44 Hz while its amplitude was 3 mm. The effect of training was evaluated by means of isotonic maximal force, heel-to-heel length in the two-leg split across, and flex-and-reach test for body flexion. The VS strength training yielded an average increase in isotonic maximal strength of 49.8%, compared with an average gain of 16% with conventional training, while no gain was observed for the control group. The VS flexibility training resulted in an average gain in the legs split of 14.5 cm compared with 4.1 cm for the conventional training and 2 cm for the control groups, respectively. The ANOVA revealed significant pre-post training effects and an interaction between pre-post training and 'treatment' effects (P < 0.001) for the isotonic maximal force and both flexibility tests. It was concluded that superimposed vibrations applied for short periods allow for increased gains in maximal strength and flexibility.
Address (up) Ribstein Centre for Research and Sport Medicine Sciences, Wingate Institute, Wingate Post, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-0414 ISBN Medium
Area Expedition Conference
Notes PMID:7853452 Approved no
Call Number Serial 56
Permanent link to this record