|   | 
Details
   web
Records
Author Grip, H.; Tengman, E.; Liebermann, D.G.; Hager, C.K.
Title Kinematic analyses including finite helical axes of drop jump landings demonstrate decreased knee control long after anterior cruciate ligament injury Type Journal Article
Year 2019 Publication (down) PloS one Abbreviated Journal PLoS One
Volume 14 Issue 10 Pages e0224261
Keywords
Abstract The purpose was to evaluate the dynamic knee control during a drop jump test following injury of the anterior cruciate ligament injury (ACL) using finite helical axes. Persons injured 17-28 years ago, treated with either physiotherapy (ACLPT, n = 23) or reconstruction and physiotherapy (ACLR, n = 28) and asymptomatic controls (CTRL, n = 22) performed a drop jump test, while kinematics were registered by motion capture. We analysed the Preparation phase (from maximal knee extension during flight until 50 ms post-touchdown) followed by an Action phase (until maximal knee flexion post-touchdown). Range of knee motion (RoM), and the length of each phase (Duration) were computed. The finite knee helical axis was analysed for momentary intervals of ~15 degrees of knee motion by its intersection (DeltaAP position) and inclination (DeltaAP Inclination) with the knee's Anterior-Posterior (AP) axis. Static knee laxity (KT100) and self-reported knee function (Lysholm score) were also assessed. The results showed that both phases were shorter for the ACL groups compared to controls (CTRL-ACLR: Duration 35+/-8 ms, p = 0.000, CTRL-ACLPT: 33+/-9 ms, p = 0.000) and involved less knee flexion (CTRL-ACLR: RoM 6.6+/-1.9 degrees , p = 0.002, CTRL-ACLR: 7.5 +/-2.0 degrees , p = 0.001). Low RoM and Duration correlated significantly with worse knee function according to Lysholm and higher knee laxity according to KT-1000. Three finite helical axes were analysed. The DeltaAP position for the first axis was most anterior in ACLPT compared to ACLR (DeltaAP position -1, ACLPT-ACLR: 13+/-3 mm, p = 0.004), with correlations to KT-1000 (rho 0.316, p = 0.008), while the DeltaAP inclination for the third axis was smaller in the ACLPT group compared to controls (DeltaAP inclination -3 ACLPT-CTRL: -13+/-5 degrees , p = 0.004) and showed a significant side difference in ACL injured groups during Action (Injured-Non-injured: 8+/-2.7 degrees , p = 0.006). Small DeltaAP inclination -3 correlated with low Lysholm (rho 0.391, p = 0.002) and high KT-1000 (rho -0.450, p = 0.001). Conclusions Compensatory movement strategies seem to be used to protect the injured knee during landing. A decreased DeltaAP inclination in injured knees during Action suggests that the dynamic knee control may remain compromised even long after injury.
Address Department of Community Medicine and Rehabilitation, Physiotherapy, Umea University, Umea, Sweden
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:31671111 Approved no
Call Number Serial 102
Permanent link to this record
 

 
Author Biess, A.; Flash, T.; Liebermann, D.G.
Title Riemannian geometric approach to human arm dynamics, movement optimization, and invariance Type Journal Article
Year 2011 Publication (down) Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics Abbreviated Journal Phys Rev E Stat Nonlin Soft Matter Phys
Volume 83 Issue 3 Pt 1 Pages 031927
Keywords Arm/*physiology; Biomechanics; Computer Simulation; Humans; Kinetics; Male; Models, Biological; Models, Statistical; Models, Theoretical; *Movement; Psychomotor Performance/*physiology; Range of Motion, Articular/physiology; Reaction Time/physiology; Space Perception/*physiology; Torque
Abstract We present a generally covariant formulation of human arm dynamics and optimization principles in Riemannian configuration space. We extend the one-parameter family of mean-squared-derivative (MSD) cost functionals from Euclidean to Riemannian space, and we show that they are mathematically identical to the corresponding dynamic costs when formulated in a Riemannian space equipped with the kinetic energy metric. In particular, we derive the equivalence of the minimum-jerk and minimum-torque change models in this metric space. Solutions of the one-parameter family of MSD variational problems in Riemannian space are given by (reparameterized) geodesic paths, which correspond to movements with least muscular effort. Finally, movement invariants are derived from symmetries of the Riemannian manifold. We argue that the geometrical structure imposed on the arm's configuration space may provide insights into the emerging properties of the movements generated by the motor system.
Address Bernstein Center for Computational Neuroscience, DE-37073 Gottingen, Germany. armin@nld.ds.mpg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755 ISBN Medium
Area Expedition Conference
Notes PMID:21517543 Approved no
Call Number Serial 29
Permanent link to this record
 

 
Author Liebermann, D.G.; Franks, I. M.
Title The use of feedback-based technologies in skill acquisition Type Book Chapter
Year 2004 Publication (down) Notational analysis of Sport and Coaching Science Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher E & FN Spon Pub Place of Publication Editor M. Hughes; I.M. Franks
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 45
Permanent link to this record
 

 
Author Levin, M.F.; Liebermann, D.G.; Parmet, Y.; Berman, S.
Title Compensatory Versus Noncompensatory Shoulder Movements Used for Reaching in Stroke Type Journal Article
Year 2015 Publication (down) Neurorehabilitation and Neural Repair Abbreviated Journal Neurorehabil Neural Repair
Volume Issue Pages
Keywords adaptation; arm movement; compensation; kinematics; recovery; rehabilitation
Abstract BACKGROUND: The extent to which the upper-limb flexor synergy constrains or compensates for arm motor impairment during reaching is controversial. This synergy can be quantified with a minimal marker set describing movements of the arm-plane. OBJECTIVES: To determine whether and how (a) upper-limb flexor synergy in patients with chronic stroke contributes to reaching movements to different arm workspace locations and (b) reaching deficits can be characterized by arm-plane motion. METHODS: Sixteen post-stroke and 8 healthy control subjects made unrestrained reaching movements to targets located in ipsilateral, central, and contralateral arm workspaces. Arm-plane, arm, and trunk motion, and their temporal and spatial linkages were analyzed. RESULTS: Individuals with moderate/severe stroke used greater arm-plane movement and compensatory trunk movement compared to those with mild stroke and control subjects. Arm-plane and trunk movements were more temporally coupled in stroke compared with controls. Reaching accuracy was related to different segment and joint combinations for each target and group: arm-plane movement in controls and mild stroke subjects, and trunk and elbow movements in moderate/severe stroke subjects. Arm-plane movement increased with time since stroke and when combined with trunk rotation, discriminated between different subject groups for reaching the central and contralateral targets. Trunk movement and arm-plane angle during target reaches predicted the subject group. CONCLUSIONS: The upper-limb flexor synergy was used adaptively for reaching accuracy by patients with mild, but not moderate/severe stroke. The flexor synergy, as parameterized by the amount of arm-plane motion, can be used by clinicians to identify levels of motor recovery in patients with stroke.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1545-9683 ISBN Medium
Area Expedition Conference
Notes PMID:26510934 Approved no
Call Number Serial 79
Permanent link to this record
 

 
Author Davidowitz, I.; Parmet, Y.; Frenkel-Toledo, S.; Banina, M.C.; Soroker, N.; Solomon, J.M.; Liebermann, D.G.; Levin, M.F.; Berman, S.
Title Relationship Between Spasticity and Upper-Limb Movement Disorders in Individuals With Subacute Stroke Using Stochastic Spatiotemporal Modeling Type Journal Article
Year 2019 Publication (down) Neurorehabilitation and Neural Repair Abbreviated Journal Neurorehabil Neural Repair
Volume 33 Issue 2 Pages 141-152
Keywords Gaussian mixture model; Kullback-Liebler divergence; spasticity; stroke; upper-limb kinematics
Abstract BACKGROUND: Spasticity is common in patients with stroke, yet current quantification methods are insufficient for determining the relationship between spasticity and voluntary movement deficits. This is partly a result of the effects of spasticity on spatiotemporal characteristics of movement and the variability of voluntary movement. These can be captured by Gaussian mixture models (GMMs). OBJECTIVES: To determine the influence of spasticity on upper-limb voluntary motion, as assessed by the bidirectional Kullback-Liebler divergence (BKLD) between motion GMMs. METHODS: A total of 16 individuals with subacute stroke and 13 healthy aged-equivalent controls reached to grasp 4 targets (near-center, contralateral, far-center, and ipsilateral). Two-dimensional GMMs (angle and time) were estimated for elbow extension motion. BKLD was computed for each individual and target, within the control group and between the control and stroke groups. Movement time, final elbow angle, average elbow velocity, and velocity smoothness were computed. RESULTS: Between-group BKLDs were much larger than within control-group BKLDs. Between-group BKLDs for the near-center target were lower than those for the far-center and contralateral targets, but similar to that for the ipsilateral target. For those with stroke, the final angle was lower for the near-center target, and the average velocity was higher. Velocity smoothness was lower for the near-center than for the ipsilateral target. Elbow flexor and extensor passive muscle resistance (Modified Ashworth Scale) strongly explained BKLD values. CONCLUSIONS: Results support the view that individuals with poststroke spasticity have a velocity-dependent reduction in active elbow joint range and that BKLD can be used as an objective measure of the effects of spasticity on reaching kinematics.
Address 1 Ben-Gurion University of the Negev, Beer-Sheva, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1545-9683 ISBN Medium
Area Expedition Conference
Notes PMID:30744528 Approved no
Call Number Serial 93
Permanent link to this record