Records |
Author |
Liebermann, D.G.; Levin, M.F.; McIntyre, J.; Weiss, P.L.; Berman, S. |
Title |
Arm path fragmentation and spatiotemporal features of hand reaching in healthy subjects and stroke patients |
Type |
Journal Article |
Year |
2010 |
Publication |
Conference Proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference |
Abbreviated Journal |
Conf Proc IEEE Eng Med Biol Soc |
Volume |
2010 |
Issue |
|
Pages |
5242-5245 |
Keywords |
Aged; Aged, 80 and over; Analysis of Variance; Arm/*physiology; Biomechanics/physiology; Female; Hand/*physiology; *Health; Humans; Male; Middle Aged; Movement/*physiology; Posture/physiology; Principal Component Analysis; Stroke/*physiopathology; Time Factors |
Abstract |
Arm motion in healthy humans is characterized by smooth and relatively short paths. The current study focused on 3D reaching in stroke patients. Sixteen right-hemiparetic stroke patients and 8 healthy adults performed 42 reaching movements towards 3 visual targets located at an extended arm distance. Performance was assessed in terms of spatial and temporal features of the movement; i.e., hand path, arm posture and smoothness. Differences between groups and within subjects were hypothesized for spatial and temporal aspects of reaching under the assumption that both are independent. As expected, upper limb motion of patients was characterized by longer and jerkier hand paths and slower speeds. Assessment of the number of sub-movements within each movement did not clearly discriminate between groups. Principal component analyses revealed specific clusters of either spatial or temporal measures, which accounted for a large proportion of the variance in patients but not in healthy controls. These findings support the notion of a separation between spatial and temporal features of movement. Stroke patients may fail to integrate the two aspects when executing reaching movements towards visual targets. |
Address |
Physical Therapy Dept., Sackler Faculty of Medicine, Tel Aviv University, 69978 Israel. dlieberm@post.tau.ac.il |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1557-170X |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:21096047 |
Approved |
no |
Call Number |
|
Serial |
30 |
Permanent link to this record |
|
|
|
Author |
Lowenthal-Raz, J.; Liebermann, D.G.; Friedman, J.; Soroker, N. |
Title |
Kinematic descriptors of arm reaching movement are sensitive to hemisphere-specific immediate neuromodulatory effects of transcranial direct current stimulation post stroke |
Type |
Journal Article |
Year |
2024 |
Publication |
Scientific Reports |
Abbreviated Journal |
Sci Rep |
Volume |
14 |
Issue |
1 |
Pages |
11971 |
Keywords |
Humans; *Transcranial Direct Current Stimulation/methods; Male; Female; Middle Aged; *Stroke/physiopathology/therapy; Biomechanical Phenomena; Aged; *Arm/physiopathology; *Movement/physiology; *Stroke Rehabilitation/methods; Single-Blind Method; Cross-Over Studies |
Abstract |
Transcranial direct current stimulation (tDCS) exerts beneficial effects on motor recovery after stroke, presumably by enhancement of adaptive neural plasticity. However, patients with extensive damage may experience null or deleterious effects with the predominant application mode of anodal (excitatory) stimulation of the damaged hemisphere. In such cases, excitatory stimulation of the non-damaged hemisphere might be considered. Here we asked whether tDCS exerts a measurable effect on movement quality of the hemiparetic upper limb, following just a single treatment session. Such effect may inform on the hemisphere that should be excited. Using a single-blinded crossover experimental design, stroke patients and healthy control subjects were assessed before and after anodal, cathodal and sham tDCS, each provided during a single session of reaching training (repeated point-to-point hand movement on an electronic tablet). Group comparisons of endpoint kinematics at baseline-number of peaks in the speed profile (NoP; smoothness), hand-path deviations from the straight line (SLD; accuracy) and movement time (MT; speed)-disclosed greater NoP, larger SLD and longer MT in the stroke group. NoP and MT revealed an advantage for anodal compared to sham stimulation of the lesioned hemisphere. NoP and MT improvements under anodal stimulation of the non-lesioned hemisphere correlated positively with the severity of hemiparesis. Damage to specific cortical regions and white-matter tracts was associated with lower kinematic gains from tDCS. The study shows that simple descriptors of movement kinematics of the hemiparetic upper limb are sensitive enough to demonstrate gain from neuromodulation by tDCS, following just a single session of reaching training. Moreover, the results show that tDCS-related gain is affected by the severity of baseline motor impairment, and by lesion topography. |
Address |
Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel. nachum@soroker.online |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2045-2322 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:38796610; PMCID:PMC11127956 |
Approved |
no |
Call Number |
|
Serial |
125 |
Permanent link to this record |