Records |
Author |
Levin, M.F.; Liebermann, D.G.; Parmet, Y.; Berman, S. |
Title |
Compensatory Versus Noncompensatory Shoulder Movements Used for Reaching in Stroke |
Type |
Journal Article |
Year |
2015 |
Publication |
Neurorehabilitation and Neural Repair |
Abbreviated Journal |
Neurorehabil Neural Repair |
Volume |
|
Issue |
|
Pages |
|
Keywords |
adaptation; arm movement; compensation; kinematics; recovery; rehabilitation |
Abstract |
BACKGROUND: The extent to which the upper-limb flexor synergy constrains or compensates for arm motor impairment during reaching is controversial. This synergy can be quantified with a minimal marker set describing movements of the arm-plane. OBJECTIVES: To determine whether and how (a) upper-limb flexor synergy in patients with chronic stroke contributes to reaching movements to different arm workspace locations and (b) reaching deficits can be characterized by arm-plane motion. METHODS: Sixteen post-stroke and 8 healthy control subjects made unrestrained reaching movements to targets located in ipsilateral, central, and contralateral arm workspaces. Arm-plane, arm, and trunk motion, and their temporal and spatial linkages were analyzed. RESULTS: Individuals with moderate/severe stroke used greater arm-plane movement and compensatory trunk movement compared to those with mild stroke and control subjects. Arm-plane and trunk movements were more temporally coupled in stroke compared with controls. Reaching accuracy was related to different segment and joint combinations for each target and group: arm-plane movement in controls and mild stroke subjects, and trunk and elbow movements in moderate/severe stroke subjects. Arm-plane movement increased with time since stroke and when combined with trunk rotation, discriminated between different subject groups for reaching the central and contralateral targets. Trunk movement and arm-plane angle during target reaches predicted the subject group. CONCLUSIONS: The upper-limb flexor synergy was used adaptively for reaching accuracy by patients with mild, but not moderate/severe stroke. The flexor synergy, as parameterized by the amount of arm-plane motion, can be used by clinicians to identify levels of motor recovery in patients with stroke. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1545-9683 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:26510934 |
Approved |
no |
Call Number |
|
Serial |
79 |
Permanent link to this record |
|
|
|
Author |
Krasovsky, T.; Weiss, P.L.; Zuckerman, O.; Bar, A.; Keren-Capelovitch, T.; Friedman, J. |
Title |
DataSpoon: Validation of an Instrumented Spoon for Assessment of Self-Feeding |
Type |
Journal Article |
Year |
2020 |
Publication |
Sensors (Basel, Switzerland) |
Abbreviated Journal |
Sensors (Basel) |
Volume |
20 |
Issue |
7 |
Pages |
|
Keywords |
concurrent validity; feasibility; kinematics; outcome assessment; rehabilitation |
Abstract |
Clinically feasible assessment of self-feeding is important for adults and children with motor impairments such as stroke or cerebral palsy. However, no validated assessment tool for self-feeding kinematics exists. This work presents an initial validation of an instrumented spoon (DataSpoon) developed as an evaluation tool for self-feeding kinematics. Ten young, healthy adults (three male; age 27.2 +/- 6.6 years) used DataSpoon at three movement speeds (slow, comfortable, fast) and with three different grips: “natural”, power and rotated power grip. Movement kinematics were recorded concurrently using DataSpoon and a magnetic motion capture system (trakSTAR). Eating events were automatically identified for both systems and kinematic measures were extracted from yaw, pitch and roll (YPR) data as well as from acceleration and tangential velocity profiles. Two-way, mixed model Intraclass correlation coefficients (ICC) and 95% limits of agreement (LOA) were computed to determine agreement between the systems for each kinematic variable. Most variables demonstrated fair to excellent agreement. Agreement for measures of duration, pitch and roll exceeded 0.8 (excellent agreement) for >80% of speed and grip conditions, whereas lower agreement (ICC < 0.46) was measured for tangential velocity and acceleration. A bias of 0.01-0.07 s (95% LOA [-0.54, 0.53] to [-0.63, 0.48]) was calculated for measures of duration. DataSpoon enables automatic detection of self-feeding using simple, affordable movement sensors. Using movement kinematics, variables associated with self-feeding can be identified and aid clinical reasoning for adults and children with motor impairments. |
Address |
Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1424-8220 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:32283624; PMCID:PMC7180859 |
Approved |
no |
Call Number |
|
Serial |
104 |
Permanent link to this record |
|
|
|
Author |
Kaufman-Cohen, Y.; Portnoy, S.; Levanon, Y.; Friedman, J. |
Title |
Does Object Height Affect the Dart Throwing Motion Angle during Seated Activities of Daily Living? |
Type |
Journal Article |
Year |
2019 |
Publication |
Journal of Motor Behavior |
Abbreviated Journal |
J Mot Behav |
Volume |
|
Issue |
|
Pages |
1-10 |
Keywords |
dart throwing motion (DTM); heights; kinematics; seated activities of daily living (ADL); upper extremity; wrist rehabilitation |
Abstract |
Complex wrist motions are needed to complete various daily activities. Analyzing the multidimensional motion of the wrist is crucial for understanding our functional movement. Several studies have shown that numerous activities of daily livings (ADLs) are performed using an oblique plane of wrist motion from radial-extension to ulnar-flexion, named the Dart Throwing Motion (DTM) plane. To the best of our knowledge, the DTM plane angle performed during ADLs has not been compared between different heights (e.g. table, shoulder and head height), as is common when performing day-to-day tasks. In this study, we compared DTM plane angles when performing different ADLs at three different heights and examined the relationship between DTM plane angles and limb position. We found that height had a significant effect on the DTM plane angles – the mean DTM plane angle was greater at the lower level compared to the mid and higher levels. A significant effect of shoulder orientation on mean DTM plane angles was shown in the sagittal and coronal planes. Our findings support the importance of training daily tasks at different heights during rehabilitation following wrist injuries, in order to explore a large range of DTM angles, to accommodate needs of common ADLs. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0022-2895 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:31359843 |
Approved |
no |
Call Number |
|
Serial |
100 |
Permanent link to this record |
|
|
|
Author |
Lackritz, H.; Parmet, Y.; Frenkel-Toledo, S.; Banina, M.C.; Soroker, N.; Solomon, J.M.; Liebermann, D.G.; Levin, M.F.; Berman, S. |
Title |
Effect of post-stroke spasticity on voluntary movement of the upper limb |
Type |
Journal Article |
Year |
2021 |
Publication |
Journal of Neuroengineering and Rehabilitation |
Abbreviated Journal |
J Neuroeng Rehabil |
Volume |
18 |
Issue |
1 |
Pages |
81 |
Keywords |
Gaussian mixture model; Hellinger's distance; Hemiparesis; Kinematics; Kullback-Liebler divergence; Spasticity; Stochastic model; Stroke |
Abstract |
BACKGROUND: Hemiparesis following stroke is often accompanied by spasticity. Spasticity is one factor among the multiple components of the upper motor neuron syndrome that contributes to movement impairment. However, the specific contribution of spasticity is difficult to isolate and quantify. We propose a new method of quantification and evaluation of the impact of spasticity on the quality of movement following stroke. METHODS: Spasticity was assessed using the Tonic Stretch Reflex Threshold (TSRT). TSRT was analyzed in relation to stochastic models of motion to quantify the deviation of the hemiparetic upper limb motion from the normal motion patterns during a reaching task. Specifically, we assessed the impact of spasticity in the elbow flexors on reaching motion patterns using two distinct measures of the 'distance' between pathological and normal movement, (a) the bidirectional Kullback-Liebler divergence (BKLD) and (b) Hellinger's distance (HD). These measures differ in their sensitivity to different confounding variables. Motor impairment was assessed clinically by the Fugl-Meyer assessment scale for the upper extremity (FMA-UE). Forty-two first-event stroke patients in the subacute phase and 13 healthy controls of similar age participated in the study. Elbow motion was analyzed in the context of repeated reach-to-grasp movements towards four differently located targets. Log-BKLD and HD along with movement time, final elbow extension angle, mean elbow velocity, peak elbow velocity, and the number of velocity peaks of the elbow motion were computed. RESULTS: Upper limb kinematics in patients with lower FMA-UE scores (greater impairment) showed greater deviation from normality when the distance between impaired and normal elbow motion was analyzed either with the BKLD or HD measures. The severity of spasticity, reflected by the TSRT, was related to the distance between impaired and normal elbow motion analyzed with either distance measure. Mean elbow velocity differed between targets, however HD was not sensitive to target location. This may point at effects of spasticity on motion quality that go beyond effects on velocity. CONCLUSIONS: The two methods for analyzing pathological movement post-stroke provide new options for studying the relationship between spasticity and movement quality under different spatiotemporal constraints. |
Address |
The Zlotowski Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel. sigalbe@bgu.ac.il |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1743-0003 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:33985543 |
Approved |
no |
Call Number |
|
Serial |
108 |
Permanent link to this record |
|
|
|
Author |
Davidowitz, I.; Parmet, Y.; Frenkel-Toledo, S.; Banina, M.C.; Soroker, N.; Solomon, J.M.; Liebermann, D.G.; Levin, M.F.; Berman, S. |
Title |
Relationship Between Spasticity and Upper-Limb Movement Disorders in Individuals With Subacute Stroke Using Stochastic Spatiotemporal Modeling |
Type |
Journal Article |
Year |
2019 |
Publication |
Neurorehabilitation and Neural Repair |
Abbreviated Journal |
Neurorehabil Neural Repair |
Volume |
33 |
Issue |
2 |
Pages |
141-152 |
Keywords |
Gaussian mixture model; Kullback-Liebler divergence; spasticity; stroke; upper-limb kinematics |
Abstract |
BACKGROUND: Spasticity is common in patients with stroke, yet current quantification methods are insufficient for determining the relationship between spasticity and voluntary movement deficits. This is partly a result of the effects of spasticity on spatiotemporal characteristics of movement and the variability of voluntary movement. These can be captured by Gaussian mixture models (GMMs). OBJECTIVES: To determine the influence of spasticity on upper-limb voluntary motion, as assessed by the bidirectional Kullback-Liebler divergence (BKLD) between motion GMMs. METHODS: A total of 16 individuals with subacute stroke and 13 healthy aged-equivalent controls reached to grasp 4 targets (near-center, contralateral, far-center, and ipsilateral). Two-dimensional GMMs (angle and time) were estimated for elbow extension motion. BKLD was computed for each individual and target, within the control group and between the control and stroke groups. Movement time, final elbow angle, average elbow velocity, and velocity smoothness were computed. RESULTS: Between-group BKLDs were much larger than within control-group BKLDs. Between-group BKLDs for the near-center target were lower than those for the far-center and contralateral targets, but similar to that for the ipsilateral target. For those with stroke, the final angle was lower for the near-center target, and the average velocity was higher. Velocity smoothness was lower for the near-center than for the ipsilateral target. Elbow flexor and extensor passive muscle resistance (Modified Ashworth Scale) strongly explained BKLD values. CONCLUSIONS: Results support the view that individuals with poststroke spasticity have a velocity-dependent reduction in active elbow joint range and that BKLD can be used as an objective measure of the effects of spasticity on reaching kinematics. |
Address |
1 Ben-Gurion University of the Negev, Beer-Sheva, Israel |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1545-9683 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:30744528 |
Approved |
no |
Call Number |
|
Serial |
93 |
Permanent link to this record |