|   | 
Details
   web
Records
Author Merdler, T.; Liebermann, D.G.; Levin, M.F.; Berman, S.
Title Arm-plane representation of shoulder compensation during pointing movements in patients with stroke Type Journal Article
Year 2013 Publication Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology Abbreviated Journal J Electromyogr Kinesiol
Volume 23 Issue 4 Pages 938–947
Keywords Kinematics; Arm movement; Rehabilitation
Abstract Improvements in functional motor activities are often accompanied by motor compensations to overcome persistent motor impairment in the upper limb. Kinematic analysis is used to objectively quantify movement patterns including common motor compensations such as excessive trunk displacement during reaching. However, a common motor compensation to assist reaching, shoulder abduction, is not adequately characterized by current motion analysis approaches. We apply the arm-plane representation that accounts for the co-variation between movements of the whole arm, and investigate its ability to identify and quantify compensatory arm movements in stroke subjects when making forward arm reaches. This method has not been previously applied to the analysis of motion deficits. Sixteen adults with right post-stroke hemiparesis and eight healthy age-matched controls reached in three target directions (14 trials/target; sampling rate: 100Hz). Arm-plane movement was validated against endpoint, joint, and trunk kinematics and compared between groups. In stroke subjects, arm-plane measures were correlated with arm impairment (Fugl-Meyer Assessment) and ability (Box and Blocks) scores and were more sensitive than clinical measures to detect mild motor impairment. Arm-plane motion analysis provides new information about motor compensations involving the co-variation of shoulder and elbow movements that may help to understand the underlying motor deficits in patients with stroke.
Address Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title (down) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-6411 ISBN Medium
Area Expedition Conference
Notes PMID:23566477 Approved no
Call Number Serial 69
Permanent link to this record
 

 
Author Harel Arzi; Tal Krasovsky; Moshe Pritsch; Dario G. Liebermann
Title Movement control in patients with shoulder instability: a comparison between patients after open surgery and nonoperated patients Type Journal Article
Year 2014 Publication Journal of Shoulder and Elbow Surgery Abbreviated Journal
Volume 23 Issue 7 Pages 982–992
Keywords Smoothness; kinesthesis; arm kinematics; shoulder instability; open surgery
Abstract Background

Open surgery to correct shoulder instability is deemed to facilitate recovery of static and dynamic motor functions. Postoperative assessments focus primarily on static outcomes (e.g., repositioning accuracy). We introduce kinematic measures of arm smoothness to assess shoulder patients after open surgery and compare them with nonoperated patients. Performance among both groups of patients was hypothesized to differ. Postsurgery patients were expected to match healthy controls.

Methods

All participants performed pointing movements with the affected/dominant arm fully extended at fast, preferred, and slow speeds (36 trials per subject). Kinematic data were collected (100 Hz, 3 seconds), and mixed-design analyses of variance (group, speed) were performed with movement time, movement amplitude, acceleration time, and model-observed similarities as dependent variables. Nonparametric tests were performed for number of velocity peaks.

Results

Nonoperated and postsurgery patients showed similarities at preferred and faster movement speeds but not at slower speed. Postsurgery patients were closer to maximally smoothed motion and differed from healthy controls mainly during slow arm movements (closer to maximal smoothness, larger movement amplitude, shorter movement time, and lower number of peaks; i.e., less movement fragmentation).

Conclusions

Arm kinematic analyses suggest that open surgery stabilizes the shoulder but does not necessarily restore normal movement quality. Patients with recurrent anterior shoulder instability (RASI) seem to implement a “safe” but nonadaptive mode of action whereby preplanned stereotypical movements may be executed without depending on feedback. Rehabilitation of RASI patients should focus on restoring feedback-based movement control. Clinical assessment of RASI patients should include higher order kinematic descriptors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (down) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 74
Permanent link to this record
 

 
Author Levin, M.F.; Liebermann, D.G.; Parmet, Y.; Berman, S.
Title Compensatory Versus Noncompensatory Shoulder Movements Used for Reaching in Stroke Type Journal Article
Year 2015 Publication Neurorehabilitation and Neural Repair Abbreviated Journal Neurorehabil Neural Repair
Volume Issue Pages
Keywords adaptation; arm movement; compensation; kinematics; recovery; rehabilitation
Abstract BACKGROUND: The extent to which the upper-limb flexor synergy constrains or compensates for arm motor impairment during reaching is controversial. This synergy can be quantified with a minimal marker set describing movements of the arm-plane. OBJECTIVES: To determine whether and how (a) upper-limb flexor synergy in patients with chronic stroke contributes to reaching movements to different arm workspace locations and (b) reaching deficits can be characterized by arm-plane motion. METHODS: Sixteen post-stroke and 8 healthy control subjects made unrestrained reaching movements to targets located in ipsilateral, central, and contralateral arm workspaces. Arm-plane, arm, and trunk motion, and their temporal and spatial linkages were analyzed. RESULTS: Individuals with moderate/severe stroke used greater arm-plane movement and compensatory trunk movement compared to those with mild stroke and control subjects. Arm-plane and trunk movements were more temporally coupled in stroke compared with controls. Reaching accuracy was related to different segment and joint combinations for each target and group: arm-plane movement in controls and mild stroke subjects, and trunk and elbow movements in moderate/severe stroke subjects. Arm-plane movement increased with time since stroke and when combined with trunk rotation, discriminated between different subject groups for reaching the central and contralateral targets. Trunk movement and arm-plane angle during target reaches predicted the subject group. CONCLUSIONS: The upper-limb flexor synergy was used adaptively for reaching accuracy by patients with mild, but not moderate/severe stroke. The flexor synergy, as parameterized by the amount of arm-plane motion, can be used by clinicians to identify levels of motor recovery in patients with stroke.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title (down) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1545-9683 ISBN Medium
Area Expedition Conference
Notes PMID:26510934 Approved no
Call Number Serial 79
Permanent link to this record
 

 
Author Friedman, J.; Korman, M.
Title Offline Optimization of the Relative Timing of Movements in a Sequence Is Blocked by Retroactive Behavioral Interference Type Journal Article
Year 2016 Publication Frontiers in Human Neuroscience Abbreviated Journal Front. Hum. Neurosci.
Volume 10 Issue Pages 623
Keywords learning; interference; consolidation; finger movements; kinematics
Abstract Acquisition of motor skills often involves the concatenation of single movements into sequences. Along the course of learning, sequential performance becomes progressively faster and smoother, presumably by optimization of both motor planning and motor execution. Following its encoding during training, “how-to” memory undergoes consolidation, reflecting transformations in performance and its neurobiological underpinnings over time. This offline post-training memory process is characterized by two phenomena: reduced sensitivity to interference and the emergence of delayed, typically overnight, gains in performance. Here, using a training protocol that effectively induces motor sequence memory consolidation, we tested temporal and kinematic parameters of performance within (online) and between (offline) sessions, and their sensitivity to retroactive interference. One group learned a given finger-to-thumb opposition sequence (FOS), and showed robust delayed (consolidation) gains in the number of correct sequences performed at 24 h. A second group learned an additional (interference) FOS shortly after the first and did not show delayed gains. Reduction of touch times and inter-movement intervals significantly contributed to the overall offline improvement of performance overnight. However, only the offline inter-movement interval shortening was selectively blocked by the interference experience. Velocity and amplitude, comprising movement time, also significantly changed across the consolidation period but were interference-insensitive. Moreover, they paradoxically canceled out each other. Current results suggest that shifts in the representation of the trained sequence are subserved by multiple processes: from distinct changes in kinematic characteristics of individual finger movements to high-level, temporal reorganization of the movements as a unit. Each of these processes has a distinct time course and a specific susceptibility to retroactive interference. This multiple-component view may bridge the gap in understanding the link between the behavioral changes, which define online and offline learning, and the biological mechanisms that support those changes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (down) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1662-5161 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 83
Permanent link to this record
 

 
Author Davidowitz, I.; Parmet, Y.; Frenkel-Toledo, S.; Banina, M.C.; Soroker, N.; Solomon, J.M.; Liebermann, D.G.; Levin, M.F.; Berman, S.
Title Relationship Between Spasticity and Upper-Limb Movement Disorders in Individuals With Subacute Stroke Using Stochastic Spatiotemporal Modeling Type Journal Article
Year 2019 Publication Neurorehabilitation and Neural Repair Abbreviated Journal Neurorehabil Neural Repair
Volume 33 Issue 2 Pages 141-152
Keywords Gaussian mixture model; Kullback-Liebler divergence; spasticity; stroke; upper-limb kinematics
Abstract BACKGROUND: Spasticity is common in patients with stroke, yet current quantification methods are insufficient for determining the relationship between spasticity and voluntary movement deficits. This is partly a result of the effects of spasticity on spatiotemporal characteristics of movement and the variability of voluntary movement. These can be captured by Gaussian mixture models (GMMs). OBJECTIVES: To determine the influence of spasticity on upper-limb voluntary motion, as assessed by the bidirectional Kullback-Liebler divergence (BKLD) between motion GMMs. METHODS: A total of 16 individuals with subacute stroke and 13 healthy aged-equivalent controls reached to grasp 4 targets (near-center, contralateral, far-center, and ipsilateral). Two-dimensional GMMs (angle and time) were estimated for elbow extension motion. BKLD was computed for each individual and target, within the control group and between the control and stroke groups. Movement time, final elbow angle, average elbow velocity, and velocity smoothness were computed. RESULTS: Between-group BKLDs were much larger than within control-group BKLDs. Between-group BKLDs for the near-center target were lower than those for the far-center and contralateral targets, but similar to that for the ipsilateral target. For those with stroke, the final angle was lower for the near-center target, and the average velocity was higher. Velocity smoothness was lower for the near-center than for the ipsilateral target. Elbow flexor and extensor passive muscle resistance (Modified Ashworth Scale) strongly explained BKLD values. CONCLUSIONS: Results support the view that individuals with poststroke spasticity have a velocity-dependent reduction in active elbow joint range and that BKLD can be used as an objective measure of the effects of spasticity on reaching kinematics.
Address 1 Ben-Gurion University of the Negev, Beer-Sheva, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title (down) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1545-9683 ISBN Medium
Area Expedition Conference
Notes PMID:30744528 Approved no
Call Number Serial 93
Permanent link to this record