Records |
Author |
Liebermann, D.G.; Goodman, D. |
Title |
Effects of visual guidance on the reduction of impacts during landings |
Type |
Journal Article |
Year |
1991 |
Publication |
Ergonomics |
Abbreviated Journal |
Ergonomics |
Volume |
34 |
Issue |
11 |
Pages |
1399-1406 |
Keywords |
Adult; Analysis of Variance; Biomechanics; *Cues; Humans; Male; Motor Activity/*physiology; Psychomotor Performance/physiology; Vision, Ocular/*physiology |
Abstract |
While a common view is that vision is essential to motor performance, some recent studies have shown that continuous visual guidance may not always be required within certain time constraints. This study investigated a landing-related task (self-released falls) to assess the extent to which visual information enhances the ability to reduce the impacts at touchdown. Six individuals performed six blocked trials from four height categories in semi-counterbalanced order (5-10, 20-25, 60-65, and 90-95 cm) in vision and no-vision conditions randomly assigned. A series of two-way ANOVA with repeated measures were carried out separately on each dependent variable collapsed over six trials. The results indicated that vision during the flight did not produce softer landings. Indeed, in analysing the first peak (PFP) a main effect for visual condition was revealed in that the mean amplitude was slightly higher when vision was available (F(1,5) = 6.57; p less than 0.05), thus implicating higher forces at impact. The results obtained when the time to the first peak (TFP) was applied showed no significant differences between conditions (F(1,5) less than 1). As expected, in all cases, the analyses yielded significant main effects for the height categories factor. It appears that during self-initiated falls in which the environmental cues are known before the event, visual guidance is not necessary in order to adopt a softer landing strategy. |
Address |
Research Department, Wingate Institute, Israel |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0014-0139 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:1800107 |
Approved |
no |
Call Number |
|
Serial |
55 |
Permanent link to this record |
|
|
|
Author |
Issurin, V.B.; Liebermann, D.G.; Tenenbaum, G. |
Title |
Effect of vibratory stimulation training on maximal force and flexibility |
Type |
|
Year |
1994 |
Publication |
Journal of Sports Sciences |
Abbreviated Journal |
J Sports Sci |
Volume |
12 |
Issue |
6 |
Pages |
561-566 |
Keywords |
Adult; Humans; Male; Muscle Contraction/physiology; Muscle, Skeletal/*physiology; *Physical Education and Training; Vibration/*therapeutic use |
Abstract |
In this study, we investigated a new method of training for maximal strength and flexibility, which included exertion with superimposed vibration (vibratory stimulation, VS) on target muscles. Twenty-eight male athletes were divided into three groups, and trained three times a week for 3 weeks in one of the following conditions: (A) conventional exercises for strength of the arms and VS stretching exercises for the legs; (B) VS strength exercises for the arms and conventional stretching exercises for the legs; (C) irrelevant training (control group). The vibration was applied at 44 Hz while its amplitude was 3 mm. The effect of training was evaluated by means of isotonic maximal force, heel-to-heel length in the two-leg split across, and flex-and-reach test for body flexion. The VS strength training yielded an average increase in isotonic maximal strength of 49.8%, compared with an average gain of 16% with conventional training, while no gain was observed for the control group. The VS flexibility training resulted in an average gain in the legs split of 14.5 cm compared with 4.1 cm for the conventional training and 2 cm for the control groups, respectively. The ANOVA revealed significant pre-post training effects and an interaction between pre-post training and 'treatment' effects (P < 0.001) for the isotonic maximal force and both flexibility tests. It was concluded that superimposed vibrations applied for short periods allow for increased gains in maximal strength and flexibility. |
Address |
Ribstein Centre for Research and Sport Medicine Sciences, Wingate Institute, Wingate Post, Israel |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0264-0414 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:7853452 |
Approved |
no |
Call Number |
|
Serial |
56 |
Permanent link to this record |
|
|
|
Author |
Hoffman, J.R.; Liebermann, D.; Gusis, A. |
Title |
Relationship of leg strength and power to ground reaction forces in both experienced and novice jump trained personnel |
Type |
Journal Article |
Year |
1997 |
Publication |
Aviation, Space, and Environmental Medicine |
Abbreviated Journal |
Aviat Space Environ Med |
Volume |
68 |
Issue |
8 |
Pages |
710-714 |
Keywords |
*Aerospace Medicine; *Aviation; Biomechanics; Humans; Leg/*physiology; Male; Military Personnel/*education; *Physical Education and Training; Physical Fitness/*physiology; Range of Motion, Articular; Wounds and Injuries/etiology/*prevention & control |
Abstract |
METHODS: There were 14 male soldiers who participated in this study examining the relationship of leg strength and power on landing performance. Subjects were separated into two groups. The first group (E, n = 7) were parachute training instructors and highly experienced in parachute jumping. The second group of subjects (N, n = 7) had no prior parachute training experience and were considered novice jumpers. All subjects were tested for one-repetition maximum (1 RM) squat strength and maximal jump power. Ground reaction forces (GRF) and the time to peak force (TPF) at landing were measured from jumps at four different heights (95 cm, 120 cm, 145 cm, and 170 cm). All jumps were performed from a customized jump platform onto a force plate. RESULTS: No differences were seen between E and N in either IRM squat strength or in MJP. In addition, no differences were seen between the groups for time to peak force at any jump height. However, significantly greater GRF were observed in E compared to N. Moderate to high correlations between maximal jump power and GRF (r values ranging from 0.62-0.93) were observed in E. Although maximal jump power and the TPF was significantly correlated (r = -0.89) at only 120 cm for E, it was interesting to note that the correlations between MJP and the time to peak force in E were all negative and that the correlations between these variables in N were all positive. CONCLUSIONS: These results suggest that experienced parachutists may use a different landing strategy than novice jumpers. This difference may be reflected by differences in GRF generated during impact and a more efficient utilization of muscle power during the impact phase of the landing. |
Address |
Aeromedical Center, Physiological Training Unit, Israel Air Force, Israel |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0095-6562 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:9262813 |
Approved |
no |
Call Number |
|
Serial |
60 |
Permanent link to this record |
|
|
|
Author |
Falk, B.; Eliakim, A.; Dotan, R.; Liebermann, D.G.; Regev, R.; Bar-Or, O. |
Title |
Birth weight and physical ability in 5- to 8-yr-old healthy children born prematurely |
Type |
Journal Article |
Year |
1997 |
Publication |
Medicine and Science in Sports and Exercise |
Abbreviated Journal |
Med Sci Sports Exerc |
Volume |
29 |
Issue |
9 |
Pages |
1124-1130 |
Keywords |
*Birth Weight; Child; Child Development/physiology; Child, Preschool; Female; Follow-Up Studies; Humans; Infant, Newborn; *Infant, Premature; Male; *Motor Skills; *Physical Fitness |
Abstract |
Recent advances in perinatal care have resulted in increased survival rates of extremely small and immature newborns. This has resulted in some neurodevelopmental impairment. The purpose of this study was to quantitatively evaluate and compare neuromuscular performance in children born prematurely at various levels of subnormal birth weight (BW). Subjects were 5- to 8-yr-old children born prematurely at different levels of subnormal BW (535-1760 g, N = 22, PM), and age-matched controls born at full term (> 2500 g, N = 15, CON). None of the subjects had any clinically defined neuromuscular disabilities. Body mass (BM) of PM was lower than that of CON (18.3 +/- 2.7 vs 21.7 +/- 3.8 kg) with no difference in height or sum of 4 skinfolds. Peak mechanical power output determined with a 15-s modified Wingate Anaerobic Test and corrected for BM was lower (P = 0.07) in PM than in CON (5.11 +/- 1.07 vs 5.94 +/- 1.00 W.kg-1). This was especially noticeable in children born at extremely low BW (ELBW, < 1000 g, 4.49 +/- 1.04 W.kg-1, P < 0.01). Peak power, determined in a force-plate vertical jump, corrected for BM was lower in PM vs CON (25.5 +/- 5.4 vs 30.8 +/- 5.2 W.kg-1, respectively P = 0.01), especially in the ELBW group (20.0 +/- 5.5 W.kg-1). Similarly, the elapsed time between peak velocity and actual jump take-off was longer in PM than in CON (41.2 +/- 9.4 vs 35.8 +/- 5.8 ms, respectively, P = 0.04). No differences were observed in peak force. The results suggest that performance deficiencies of prematurely-born children may be a result of inferior inter-muscular coordination. The precise neuromotor factors responsible for this should be identified by future research. |
Address |
Ribstein Center for Research and Sport Medicine Sciences, Wingate Institute, Netanya, Israel. bfalk@ccsg.tau.ac.il |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0195-9131 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:9309621 |
Approved |
no |
Call Number |
|
Serial |
64 |
Permanent link to this record |
|
|
|
Author |
Liebermann, D.G.; Hoffman, J.R. |
Title |
Timing of preparatory landing responses as a function of availability of optic flow information |
Type |
Journal Article |
Year |
2005 |
Publication |
Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology |
Abbreviated Journal |
J Electromyogr Kinesiol |
Volume |
15 |
Issue |
1 |
Pages |
120-130 |
Keywords |
Adult; Cues; Electromyography; Humans; Male; Movement/physiology; Muscle, Skeletal/*physiology; Posture/physiology; Psychomotor Performance/*physiology; Vision, Ocular/*physiology |
Abstract |
This study investigated temporal patterns of EMG activity during self-initiated falls with different optic flow information ('gaze directions'). Onsets of EMG during the flight phase were monitored from five experienced volunteers that completed 72 landings in three gaze directions (downward, mid-range and horizontal) and six heights of fall (10-130 cm). EMG recordings were obtained from the right gastrocnemius, tibialis anterior, biceps femoris and rectus femoris muscles, and used to determine the latency of onset (L(o)) and the perceived time to contact (T(c)). Impacts at touchdown were also monitored using as estimates the major peak of the vertical ground reaction forces (F(max)) normalized to body mass, time to peak (T(max)), peak impulse (I(norm)) normalized to momentum, and rate of change of force (dF(max)/dt). Results showed that L(o) was longer as heights of fall increased, but remained within a narrow time-window at >50 cm landings. No significant differences in L(o) were observed when gaze direction was changed. The relationship between T(c) and flight time followed a linear trend regardless of gaze direction. Gaze direction did not significantly affect the landing impacts. In conclusion, availability of optic flow during landing does not play a major role in triggering the preparatory muscle actions in self-initiated falls. Once a structured landing plan has been acquired, the relevant muscles respond relative to the start of the fall. |
Address |
Department of Physical Therapy, Sackler Faculty of Medicine, Stanley Steyer School of Health Professions, University of Tel Aviv, Ramat Aviv, 69978 Tel Aviv, Israel |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1050-6411 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:15642660 |
Approved |
no |
Call Number |
|
Serial |
39 |
Permanent link to this record |