Records |
Author |
Merdler, T.; Liebermann, D.G.; Levin, M.F.; Berman, S. |
Title |
Arm-plane representation of shoulder compensation during pointing movements in patients with stroke |
Type |
Journal Article |
Year |
2013 |
Publication |
Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology |
Abbreviated Journal |
J Electromyogr Kinesiol |
Volume |
23 |
Issue |
4 |
Pages |
938–947 |
Keywords  |
Kinematics; Arm movement; Rehabilitation |
Abstract |
Improvements in functional motor activities are often accompanied by motor compensations to overcome persistent motor impairment in the upper limb. Kinematic analysis is used to objectively quantify movement patterns including common motor compensations such as excessive trunk displacement during reaching. However, a common motor compensation to assist reaching, shoulder abduction, is not adequately characterized by current motion analysis approaches. We apply the arm-plane representation that accounts for the co-variation between movements of the whole arm, and investigate its ability to identify and quantify compensatory arm movements in stroke subjects when making forward arm reaches. This method has not been previously applied to the analysis of motion deficits. Sixteen adults with right post-stroke hemiparesis and eight healthy age-matched controls reached in three target directions (14 trials/target; sampling rate: 100Hz). Arm-plane movement was validated against endpoint, joint, and trunk kinematics and compared between groups. In stroke subjects, arm-plane measures were correlated with arm impairment (Fugl-Meyer Assessment) and ability (Box and Blocks) scores and were more sensitive than clinical measures to detect mild motor impairment. Arm-plane motion analysis provides new information about motor compensations involving the co-variation of shoulder and elbow movements that may help to understand the underlying motor deficits in patients with stroke. |
Address |
Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1050-6411 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:23566477 |
Approved |
no |
Call Number |
|
Serial |
69 |
Permanent link to this record |
|
|
|
Author |
Levin, M.F.; Banina, M.C.; Frenkel-Toledo, S.; Berman, S.; Soroker, N.; Solomon, J.M.; Liebermann, D.G. |
Title |
Personalized upper limb training combined with anodal-tDCS for sensorimotor recovery in spastic hemiparesis: study protocol for a randomized controlled trial |
Type |
Journal Article |
Year |
2018 |
Publication |
Trials |
Abbreviated Journal |
Trials |
Volume |
19 |
Issue |
1 |
Pages |
7 |
Keywords  |
Neurorehabilitation; Spasticity; Spatial threshold; Stroke; tDCS |
Abstract |
BACKGROUND: Recovery of voluntary movement is a main rehabilitation goal. Efforts to identify effective upper limb (UL) interventions after stroke have been unsatisfactory. This study includes personalized impairment-based UL reaching training in virtual reality (VR) combined with non-invasive brain stimulation to enhance motor learning. The approach is guided by limiting reaching training to the angular zone in which active control is preserved (“active control zone”) after identification of a “spasticity zone”. Anodal transcranial direct current stimulation (a-tDCS) is used to facilitate activation of the affected hemisphere and enhance inter-hemispheric balance. The purpose of the study is to investigate the effectiveness of personalized reaching training, with and without a-tDCS, to increase the range of active elbow control and improve UL function. METHODS: This single-blind randomized controlled trial will take place at four academic rehabilitation centers in Canada, India and Israel. The intervention involves 10 days of personalized VR reaching training with both groups receiving the same intensity of treatment. Participants with sub-acute stroke aged 25 to 80 years with elbow spasticity will be randomized to one of three groups: personalized training (reaching within individually determined active control zones) with a-tDCS (group 1) or sham-tDCS (group 2), or non-personalized training (reaching regardless of active control zones) with a-tDCS (group 3). A baseline assessment will be performed at randomization and two follow-up assessments will occur at the end of the intervention and at 1 month post intervention. Main outcomes are elbow-flexor spatial threshold and ratio of spasticity zone to full elbow-extension range. Secondary outcomes include the Modified Ashworth Scale, Fugl-Meyer Assessment, Streamlined Wolf Motor Function Test and UL kinematics during a standardized reach-to-grasp task. DISCUSSION: This study will provide evidence on the effectiveness of personalized treatment on spasticity and UL motor ability and feasibility of using low-cost interventions in low-to-middle-income countries. TRIAL REGISTRATION: ClinicalTrials.gov, ID: NCT02725853 . Initially registered on 12 January 2016. |
Address |
Department of Physical Therapy, Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1745-6215 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:29301545 |
Approved |
no |
Call Number |
|
Serial |
87 |
Permanent link to this record |