|   | 
Details
   web
Records
Author (up) Davidowitz, I.; Parmet, Y.; Frenkel-Toledo, S.; Banina, M.C.; Soroker, N.; Solomon, J.M.; Liebermann, D.G.; Levin, M.F.; Berman, S.
Title Relationship Between Spasticity and Upper-Limb Movement Disorders in Individuals With Subacute Stroke Using Stochastic Spatiotemporal Modeling Type Journal Article
Year 2019 Publication Neurorehabilitation and Neural Repair Abbreviated Journal Neurorehabil Neural Repair
Volume 33 Issue 2 Pages 141-152
Keywords Gaussian mixture model; Kullback-Liebler divergence; spasticity; stroke; upper-limb kinematics
Abstract BACKGROUND: Spasticity is common in patients with stroke, yet current quantification methods are insufficient for determining the relationship between spasticity and voluntary movement deficits. This is partly a result of the effects of spasticity on spatiotemporal characteristics of movement and the variability of voluntary movement. These can be captured by Gaussian mixture models (GMMs). OBJECTIVES: To determine the influence of spasticity on upper-limb voluntary motion, as assessed by the bidirectional Kullback-Liebler divergence (BKLD) between motion GMMs. METHODS: A total of 16 individuals with subacute stroke and 13 healthy aged-equivalent controls reached to grasp 4 targets (near-center, contralateral, far-center, and ipsilateral). Two-dimensional GMMs (angle and time) were estimated for elbow extension motion. BKLD was computed for each individual and target, within the control group and between the control and stroke groups. Movement time, final elbow angle, average elbow velocity, and velocity smoothness were computed. RESULTS: Between-group BKLDs were much larger than within control-group BKLDs. Between-group BKLDs for the near-center target were lower than those for the far-center and contralateral targets, but similar to that for the ipsilateral target. For those with stroke, the final angle was lower for the near-center target, and the average velocity was higher. Velocity smoothness was lower for the near-center than for the ipsilateral target. Elbow flexor and extensor passive muscle resistance (Modified Ashworth Scale) strongly explained BKLD values. CONCLUSIONS: Results support the view that individuals with poststroke spasticity have a velocity-dependent reduction in active elbow joint range and that BKLD can be used as an objective measure of the effects of spasticity on reaching kinematics.
Address 1 Ben-Gurion University of the Negev, Beer-Sheva, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1545-9683 ISBN Medium
Area Expedition Conference
Notes PMID:30744528 Approved no
Call Number Serial 93
Permanent link to this record
 

 
Author (up) Friedman, J.; Korman, M.
Title Offline Optimization of the Relative Timing of Movements in a Sequence Is Blocked by Retroactive Behavioral Interference Type Journal Article
Year 2016 Publication Frontiers in Human Neuroscience Abbreviated Journal Front. Hum. Neurosci.
Volume 10 Issue Pages 623
Keywords learning; interference; consolidation; finger movements; kinematics
Abstract Acquisition of motor skills often involves the concatenation of single movements into sequences. Along the course of learning, sequential performance becomes progressively faster and smoother, presumably by optimization of both motor planning and motor execution. Following its encoding during training, “how-to” memory undergoes consolidation, reflecting transformations in performance and its neurobiological underpinnings over time. This offline post-training memory process is characterized by two phenomena: reduced sensitivity to interference and the emergence of delayed, typically overnight, gains in performance. Here, using a training protocol that effectively induces motor sequence memory consolidation, we tested temporal and kinematic parameters of performance within (online) and between (offline) sessions, and their sensitivity to retroactive interference. One group learned a given finger-to-thumb opposition sequence (FOS), and showed robust delayed (consolidation) gains in the number of correct sequences performed at 24 h. A second group learned an additional (interference) FOS shortly after the first and did not show delayed gains. Reduction of touch times and inter-movement intervals significantly contributed to the overall offline improvement of performance overnight. However, only the offline inter-movement interval shortening was selectively blocked by the interference experience. Velocity and amplitude, comprising movement time, also significantly changed across the consolidation period but were interference-insensitive. Moreover, they paradoxically canceled out each other. Current results suggest that shifts in the representation of the trained sequence are subserved by multiple processes: from distinct changes in kinematic characteristics of individual finger movements to high-level, temporal reorganization of the movements as a unit. Each of these processes has a distinct time course and a specific susceptibility to retroactive interference. This multiple-component view may bridge the gap in understanding the link between the behavioral changes, which define online and offline learning, and the biological mechanisms that support those changes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1662-5161 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 83
Permanent link to this record
 

 
Author (up) Harel Arzi; Tal Krasovsky; Moshe Pritsch; Dario G. Liebermann
Title Movement control in patients with shoulder instability: a comparison between patients after open surgery and nonoperated patients Type Journal Article
Year 2014 Publication Journal of Shoulder and Elbow Surgery Abbreviated Journal
Volume 23 Issue 7 Pages 982–992
Keywords Smoothness; kinesthesis; arm kinematics; shoulder instability; open surgery
Abstract Background

Open surgery to correct shoulder instability is deemed to facilitate recovery of static and dynamic motor functions. Postoperative assessments focus primarily on static outcomes (e.g., repositioning accuracy). We introduce kinematic measures of arm smoothness to assess shoulder patients after open surgery and compare them with nonoperated patients. Performance among both groups of patients was hypothesized to differ. Postsurgery patients were expected to match healthy controls.

Methods

All participants performed pointing movements with the affected/dominant arm fully extended at fast, preferred, and slow speeds (36 trials per subject). Kinematic data were collected (100 Hz, 3 seconds), and mixed-design analyses of variance (group, speed) were performed with movement time, movement amplitude, acceleration time, and model-observed similarities as dependent variables. Nonparametric tests were performed for number of velocity peaks.

Results

Nonoperated and postsurgery patients showed similarities at preferred and faster movement speeds but not at slower speed. Postsurgery patients were closer to maximally smoothed motion and differed from healthy controls mainly during slow arm movements (closer to maximal smoothness, larger movement amplitude, shorter movement time, and lower number of peaks; i.e., less movement fragmentation).

Conclusions

Arm kinematic analyses suggest that open surgery stabilizes the shoulder but does not necessarily restore normal movement quality. Patients with recurrent anterior shoulder instability (RASI) seem to implement a “safe” but nonadaptive mode of action whereby preplanned stereotypical movements may be executed without depending on feedback. Rehabilitation of RASI patients should focus on restoring feedback-based movement control. Clinical assessment of RASI patients should include higher order kinematic descriptors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 74
Permanent link to this record
 

 
Author (up) Kaufman-Cohen, Y.; Portnoy, S.; Levanon, Y.; Friedman, J.
Title Does Object Height Affect the Dart Throwing Motion Angle during Seated Activities of Daily Living? Type Journal Article
Year 2019 Publication Journal of Motor Behavior Abbreviated Journal J Mot Behav
Volume Issue Pages 1-10
Keywords dart throwing motion (DTM); heights; kinematics; seated activities of daily living (ADL); upper extremity; wrist rehabilitation
Abstract Complex wrist motions are needed to complete various daily activities. Analyzing the multidimensional motion of the wrist is crucial for understanding our functional movement. Several studies have shown that numerous activities of daily livings (ADLs) are performed using an oblique plane of wrist motion from radial-extension to ulnar-flexion, named the Dart Throwing Motion (DTM) plane. To the best of our knowledge, the DTM plane angle performed during ADLs has not been compared between different heights (e.g. table, shoulder and head height), as is common when performing day-to-day tasks. In this study, we compared DTM plane angles when performing different ADLs at three different heights and examined the relationship between DTM plane angles and limb position. We found that height had a significant effect on the DTM plane angles – the mean DTM plane angle was greater at the lower level compared to the mid and higher levels. A significant effect of shoulder orientation on mean DTM plane angles was shown in the sagittal and coronal planes. Our findings support the importance of training daily tasks at different heights during rehabilitation following wrist injuries, in order to explore a large range of DTM angles, to accommodate needs of common ADLs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2895 ISBN Medium
Area Expedition Conference
Notes PMID:31359843 Approved no
Call Number Serial 100
Permanent link to this record
 

 
Author (up) Krasovsky, T.; Weiss, P.L.; Zuckerman, O.; Bar, A.; Keren-Capelovitch, T.; Friedman, J.
Title DataSpoon: Validation of an Instrumented Spoon for Assessment of Self-Feeding Type Journal Article
Year 2020 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)
Volume 20 Issue 7 Pages
Keywords concurrent validity; feasibility; kinematics; outcome assessment; rehabilitation
Abstract Clinically feasible assessment of self-feeding is important for adults and children with motor impairments such as stroke or cerebral palsy. However, no validated assessment tool for self-feeding kinematics exists. This work presents an initial validation of an instrumented spoon (DataSpoon) developed as an evaluation tool for self-feeding kinematics. Ten young, healthy adults (three male; age 27.2 +/- 6.6 years) used DataSpoon at three movement speeds (slow, comfortable, fast) and with three different grips: “natural”, power and rotated power grip. Movement kinematics were recorded concurrently using DataSpoon and a magnetic motion capture system (trakSTAR). Eating events were automatically identified for both systems and kinematic measures were extracted from yaw, pitch and roll (YPR) data as well as from acceleration and tangential velocity profiles. Two-way, mixed model Intraclass correlation coefficients (ICC) and 95% limits of agreement (LOA) were computed to determine agreement between the systems for each kinematic variable. Most variables demonstrated fair to excellent agreement. Agreement for measures of duration, pitch and roll exceeded 0.8 (excellent agreement) for >80% of speed and grip conditions, whereas lower agreement (ICC < 0.46) was measured for tangential velocity and acceleration. A bias of 0.01-0.07 s (95% LOA [-0.54, 0.53] to [-0.63, 0.48]) was calculated for measures of duration. DataSpoon enables automatic detection of self-feeding using simple, affordable movement sensors. Using movement kinematics, variables associated with self-feeding can be identified and aid clinical reasoning for adults and children with motor impairments.
Address Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes PMID:32283624; PMCID:PMC7180859 Approved no
Call Number Serial 104
Permanent link to this record