Home | << 1 >> |
Records | |||||
---|---|---|---|---|---|
Author | Finkbeiner, Matthew; Friedman, Jason | ||||
Title | The flexibility of nonconsciously deployed cognitive processes: Evidence from masked congruence priming | Type | Journal Article | ||
Year | 2011 | Publication | PLoS ONE | Abbreviated Journal | |
Volume | 6 | Issue | 2 | Pages | e17095 |
Keywords | |||||
Abstract | Background It is well accepted in the subliminal priming literature that task-level properties modulate nonconscious processes. For example, in tasks with a limited number of targets, subliminal priming effects are limited to primes that are physically similar to the targets. In contrast, when a large number of targets are used, subliminal priming effects are observed for primes that share a semantic (but not necessarily physical) relationship with the target. Findings such as these have led researchers to conclude that task-level properties can direct nonconscious processes to be deployed exclusively over central (semantic) or peripheral (physically specified) representations. Principal Findings We find distinct patterns of masked priming for “novel” and “repeated” primes within a single task context. Novel primes never appear as targets and thus are not seen consciously in the experiment. Repeated primes do appear as targets, thereby lending themselves to the establishment of peripheral stimulus-response mappings. If the source of the masked priming effect were exclusively central or peripheral, then both novel and repeated primes should yield similar patterns of priming. In contrast, we find that both novel and repeated primes produce robust, yet distinct, patterns of priming. Conclusions Our findings indicate that nonconsciously elicited cognitive processes can be flexibly deployed over both central and peripheral representations within a single task context. While we agree that task level properties can influence nonconscious processes, our findings sharply constrain the extent of this influence. Specifically, our findings are inconsistent with extant accounts which hold that the influence of task-level properties is strong enough to restrict the deployment of nonconsciously elicited cognitive processes to a single type of representation (i.e. central or peripheral). |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Penn State @ write.to.jason @ | Serial | 22 | ||
Permanent link to this record | |||||
Author | Friedman, J.; Korman, M. | ||||
Title | Kinematic Strategies Underlying Improvement in the Acquisition of a Sequential Finger Task with Self-Generated vs. Cued Repetition Training | Type | Journal Article | ||
Year | 2012 | Publication | PLoS one | Abbreviated Journal | PLoS One |
Volume | 7 | Issue | 12 | Pages | e52063 |
Keywords | |||||
Abstract | Many motor skills, such as typing, consist of articulating simple movements into novel sequences that are executed faster and smoother with practice. Dynamics of re-organization of these movement sequences with multi-session training and its dependence on the amount of self-regulation of pace during training is not yet fully understood. In this study, participants practiced a sequence of key presses. Training sessions consisted of either externally (Cued) or self-initiated (Uncued) training. Long-term improvements in performance speed were mainly due to reducing gaps between finger movements in both groups, but Uncued training induced higher gains. The underlying kinematic strategies producing these changes and the representation of the trained sequence differed significantly across subjects, although net gains in speed were similar. The differences in long-term memory due to the type of training and the variation in strategies between subjects, suggest that the different neural mechanisms may subserve the improvements observed in overall performance. | ||||
Address | Department of Cognitive Science, Macquarie University, Sydney, Australia ; ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia | ||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 1932-6203 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | PMID:23272210 | Approved | no | ||
Call Number | Serial | 41 | |||
Permanent link to this record | |||||
Author | Grip, H.; Tengman, E.; Liebermann, D.G.; Hager, C.K. | ||||
Title | Kinematic analyses including finite helical axes of drop jump landings demonstrate decreased knee control long after anterior cruciate ligament injury | Type | Journal Article | ||
Year | 2019 | Publication | PloS one | Abbreviated Journal | PLoS One |
Volume | 14 | Issue | 10 | Pages | e0224261 |
Keywords | |||||
Abstract | The purpose was to evaluate the dynamic knee control during a drop jump test following injury of the anterior cruciate ligament injury (ACL) using finite helical axes. Persons injured 17-28 years ago, treated with either physiotherapy (ACLPT, n = 23) or reconstruction and physiotherapy (ACLR, n = 28) and asymptomatic controls (CTRL, n = 22) performed a drop jump test, while kinematics were registered by motion capture. We analysed the Preparation phase (from maximal knee extension during flight until 50 ms post-touchdown) followed by an Action phase (until maximal knee flexion post-touchdown). Range of knee motion (RoM), and the length of each phase (Duration) were computed. The finite knee helical axis was analysed for momentary intervals of ~15 degrees of knee motion by its intersection (DeltaAP position) and inclination (DeltaAP Inclination) with the knee's Anterior-Posterior (AP) axis. Static knee laxity (KT100) and self-reported knee function (Lysholm score) were also assessed. The results showed that both phases were shorter for the ACL groups compared to controls (CTRL-ACLR: Duration 35+/-8 ms, p = 0.000, CTRL-ACLPT: 33+/-9 ms, p = 0.000) and involved less knee flexion (CTRL-ACLR: RoM 6.6+/-1.9 degrees , p = 0.002, CTRL-ACLR: 7.5 +/-2.0 degrees , p = 0.001). Low RoM and Duration correlated significantly with worse knee function according to Lysholm and higher knee laxity according to KT-1000. Three finite helical axes were analysed. The DeltaAP position for the first axis was most anterior in ACLPT compared to ACLR (DeltaAP position -1, ACLPT-ACLR: 13+/-3 mm, p = 0.004), with correlations to KT-1000 (rho 0.316, p = 0.008), while the DeltaAP inclination for the third axis was smaller in the ACLPT group compared to controls (DeltaAP inclination -3 ACLPT-CTRL: -13+/-5 degrees , p = 0.004) and showed a significant side difference in ACL injured groups during Action (Injured-Non-injured: 8+/-2.7 degrees , p = 0.006). Small DeltaAP inclination -3 correlated with low Lysholm (rho 0.391, p = 0.002) and high KT-1000 (rho -0.450, p = 0.001). Conclusions Compensatory movement strategies seem to be used to protect the injured knee during landing. A decreased DeltaAP inclination in injured knees during Action suggests that the dynamic knee control may remain compromised even long after injury. | ||||
Address | Department of Community Medicine and Rehabilitation, Physiotherapy, Umea University, Umea, Sweden | ||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 1932-6203 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | PMID:31671111 | Approved | no | ||
Call Number | Serial | 102 | |||
Permanent link to this record |