|   | 
Details
   web
Records
Author Awasthi, Bhuvanesh; Friedman, Jason; Williams, Mark A
Title Reach Trajectories Reveal Delayed Processing of Low Spatial Frequency Faces in Developmental Prosopagnosia Type Journal Article
Year 2012 Publication Cognitive Neuroscience Abbreviated Journal
Volume 3 Issue 2 Pages 120-130
Keywords
Abstract Developmental prosopagnosia (DP) is characterized by a selective deficit in face recognition despite normal cognitive and neurological functioning. Previous research has established configural processing deficits in DP subjects. Low spatial frequency (LSF) information subserves configural face processing. Using hybrid stimuli, here we examined the evolution of perceptual dynamics and integration of LSF information by DP subjects while they pointed to high spatial frequency (HSF) face targets. Permutation analysis revealed a 230-ms delay in LSF processing by DP subjects as compared to controls. This delayed processing is likely to contribute to the difficulties associated with face recognition in DP subjects and is reflective of their alleged reliance on local rather than global features in face perception. These results suggest that quick and efficient processing of LSF information is critical for the development of normal face perception.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (down) Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Penn State @ write.to.jason @ Serial 27
Permanent link to this record
 

 
Author Liebermann, D.G.; Berman, S.; Weiss, P.L.T.; Levin, M.F.
Title Kinematics of reaching movements in a 2-d virtual environment in adults with and without stroke Type Journal Article
Year 2012 Publication IEEE Transactions on Neural Systems and Rehabilitation Engineering : a Publication of the IEEE Engineering in Medicine and Biology Society Abbreviated Journal IEEE Trans Neural Syst Rehabil Eng
Volume 20 Issue 6 Pages 778-787
Keywords
Abstract Virtual reality environments are increasingly being used for upper limb rehabilitation in poststroke patients. Our goal was to determine if arm reaching movements made in a 2-D video-capture virtual reality environment are similar to those made in a comparable physical environment. We compared arm and trunk kinematics for reaches made with the right, dominant arm to three targets (14 trials per target) in both environments by 16 adults with right poststroke hemiparesis and by eight healthy age-matched controls. Movement kinematics were recorded with a three-camera optoelectronic system at 100 samples/s. Reaching movements made by both control and stroke subjects were affected by viewing the targets in the video-capture 2-D virtual environment. Movements were slower, shorter, less straight, less accurate and involved smaller ranges of shoulder and elbow joint excursions for target reaches in the virtual environment compared to the physical environment in all subjects. Thus, there was a decrease in the overall movement quality for movements made in the 2-D virtual environment. This suggests that 2-D video-capture virtual reality environments should be used with caution when the goal of the rehabilitation program is to improve the quality of movement patterns of the upper limb.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (down) Edition
ISSN 1534-4320 ISBN Medium
Area Expedition Conference
Notes PMID:22907972 Approved no
Call Number Serial 28
Permanent link to this record
 

 
Author Friedman, J.; Korman, M.
Title Kinematic Strategies Underlying Improvement in the Acquisition of a Sequential Finger Task with Self-Generated vs. Cued Repetition Training Type Journal Article
Year 2012 Publication PLoS one Abbreviated Journal PLoS One
Volume 7 Issue 12 Pages e52063
Keywords
Abstract Many motor skills, such as typing, consist of articulating simple movements into novel sequences that are executed faster and smoother with practice. Dynamics of re-organization of these movement sequences with multi-session training and its dependence on the amount of self-regulation of pace during training is not yet fully understood. In this study, participants practiced a sequence of key presses. Training sessions consisted of either externally (Cued) or self-initiated (Uncued) training. Long-term improvements in performance speed were mainly due to reducing gaps between finger movements in both groups, but Uncued training induced higher gains. The underlying kinematic strategies producing these changes and the representation of the trained sequence differed significantly across subjects, although net gains in speed were similar. The differences in long-term memory due to the type of training and the variation in strategies between subjects, suggest that the different neural mechanisms may subserve the improvements observed in overall performance.
Address Department of Cognitive Science, Macquarie University, Sydney, Australia ; ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (down) Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:23272210 Approved no
Call Number Serial 41
Permanent link to this record
 

 
Author Mindy F. Levin; Osnat Snir; Dario G. Liebermann; Harold Weingarden; Patrice L. Weiss
Title Virtual Reality Versus Conventional Treatment of Reaching Ability in Chronic Stroke: Clinical Feasibility Study Type Journal Article
Year 2012 Publication Neurology and Therapy Abbreviated Journal
Volume 1 Issue 3 Pages 1-15
Keywords
Abstract Introduction

The objective of this study was to evaluate the potential of exercises performed in a 2D video-capture virtual reality (VR) training environment to improve upper limb motor ability in stroke patients compared to those performed in conventional therapy.

Methods

A small sample randomized control trial, in an outpatient rehabilitation center with 12 patients with chronic stroke, aged 33–80 years, who were randomly allocated to video-capture VR therapy and conventional therapy groups. All patients participated in four clinical evaluation sessions (pre-test 1, pre-test 2, post-test, follow-up) and nine 45-minute intervention sessions over a 3-week period. Main outcomes assessed were Body Structure and Function (impairment: Fugl–Meyer Assessment [FMA]; Composite Spasticity Index [CSI]; Reaching Performance Scale for Stroke), Activity (Box and Blocks; Wolf Motor Function Test [WMFT]), and Participation (Motor Activity Log) levels of the International Classification of Functioning.

Results

Improvements occurred in both groups, but more patients in the VR group improved upper limb clinical impairment (FMA, CSI) and activity scores (WMFT) and improvements occurred earlier. Patients in the VR group also reported satisfaction with the novel treatment.

Conclusions

The modest advantage of VR over conventional training supports further investigation of the effect of video-capture VR or VR combined with conventional therapy in larger-scale randomized, more intense controlled studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue (down) Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 42
Permanent link to this record