Kaufman-Cohen, Y., Portnoy, S., Levanon, Y., & Friedman, J. (2019). Does Object Height Affect the Dart Throwing Motion Angle during Seated Activities of Daily Living? J Mot Behav, , 1–10.
Abstract: Complex wrist motions are needed to complete various daily activities. Analyzing the multidimensional motion of the wrist is crucial for understanding our functional movement. Several studies have shown that numerous activities of daily livings (ADLs) are performed using an oblique plane of wrist motion from radial-extension to ulnar-flexion, named the Dart Throwing Motion (DTM) plane. To the best of our knowledge, the DTM plane angle performed during ADLs has not been compared between different heights (e.g. table, shoulder and head height), as is common when performing day-to-day tasks. In this study, we compared DTM plane angles when performing different ADLs at three different heights and examined the relationship between DTM plane angles and limb position. We found that height had a significant effect on the DTM plane angles – the mean DTM plane angle was greater at the lower level compared to the mid and higher levels. A significant effect of shoulder orientation on mean DTM plane angles was shown in the sagittal and coronal planes. Our findings support the importance of training daily tasks at different heights during rehabilitation following wrist injuries, in order to explore a large range of DTM angles, to accommodate needs of common ADLs.
|
Kaufman-Cohen, Y., Levanon, Y., Friedman, J., Yaniv, Y., & Portnoy, S. (2020). Home exercise in the dart-throwing motion plane after distal radius fractures: A Pilot Randomized Controlled Trial. Journal of Hand Therapy, .
|
Awasthi, B., Williams, M. A., & Friedman, J. (2016). Examining the role of red background in magnocellular contribution to face perception. PeerJ, 4, e1617.
Abstract: This study examines the role of the magnocellular system in the early stages of face perception, in particular sex categorization. Utilizing the specific property of magnocellular suppression in red light, we investigated visually guided reaching to low and high spatial frequency hybrid faces against red and grey backgrounds. The arm movement curvature measure shows that reduced response of the magnocellular pathway interferes with the low spatial frequency component of face perception. This finding provides behavioral evidence for magnocellular contribution to non-emotional aspect of face perception.
|
Friedman, J., & Korman, M. (2012). Kinematic Strategies Underlying Improvement in the Acquisition of a Sequential Finger Task with Self-Generated vs. Cued Repetition Training. PLoS One, 7(12), e52063.
Abstract: Many motor skills, such as typing, consist of articulating simple movements into novel sequences that are executed faster and smoother with practice. Dynamics of re-organization of these movement sequences with multi-session training and its dependence on the amount of self-regulation of pace during training is not yet fully understood. In this study, participants practiced a sequence of key presses. Training sessions consisted of either externally (Cued) or self-initiated (Uncued) training. Long-term improvements in performance speed were mainly due to reducing gaps between finger movements in both groups, but Uncued training induced higher gains. The underlying kinematic strategies producing these changes and the representation of the trained sequence differed significantly across subjects, although net gains in speed were similar. The differences in long-term memory due to the type of training and the variation in strategies between subjects, suggest that the different neural mechanisms may subserve the improvements observed in overall performance.
|
Awasthi, B., Sowman, P. F., Friedman, J., & Williams, M. A. (2013). Distinct spatial scale sensitivities for early categorisation of Faces and Places: Neuromagnetic and Behavioural Findings. Frontiers in Human Neuroscience, 7(91).
Abstract: Research exploring the role of spatial frequencies in rapid stimulus detection and categorisation report flexible reliance on specific spatial frequency bands. Here, through a set of behavioural and magnetoencephalography (MEG) experiments, we investigated the role of low spatial frequency (LSF)(25 cpf) information during the categorisation of faces and places. Reaction time measures revealed significantly faster categorisation of faces driven by LSF information, while rapid categorisation of places was facilitated by HSF information. The MEG study showed significantly earlier latency of the M170 component for LSF faces compared to HSF faces. Moreover, the M170 amplitude was larger for LSF faces than for LSF places, whereas the reverse pattern was evident for HSF faces and places. These results suggest that spatial frequency modulates the processing of category specific information for faces and places.
|