Levin, M. F., Liebermann, D. G., Parmet, Y., & Berman, S. (2015). Compensatory Versus Noncompensatory Shoulder Movements Used for Reaching in Stroke. Neurorehabil Neural Repair, .
Abstract: BACKGROUND: The extent to which the upper-limb flexor synergy constrains or compensates for arm motor impairment during reaching is controversial. This synergy can be quantified with a minimal marker set describing movements of the arm-plane. OBJECTIVES: To determine whether and how (a) upper-limb flexor synergy in patients with chronic stroke contributes to reaching movements to different arm workspace locations and (b) reaching deficits can be characterized by arm-plane motion. METHODS: Sixteen post-stroke and 8 healthy control subjects made unrestrained reaching movements to targets located in ipsilateral, central, and contralateral arm workspaces. Arm-plane, arm, and trunk motion, and their temporal and spatial linkages were analyzed. RESULTS: Individuals with moderate/severe stroke used greater arm-plane movement and compensatory trunk movement compared to those with mild stroke and control subjects. Arm-plane and trunk movements were more temporally coupled in stroke compared with controls. Reaching accuracy was related to different segment and joint combinations for each target and group: arm-plane movement in controls and mild stroke subjects, and trunk and elbow movements in moderate/severe stroke subjects. Arm-plane movement increased with time since stroke and when combined with trunk rotation, discriminated between different subject groups for reaching the central and contralateral targets. Trunk movement and arm-plane angle during target reaches predicted the subject group. CONCLUSIONS: The upper-limb flexor synergy was used adaptively for reaching accuracy by patients with mild, but not moderate/severe stroke. The flexor synergy, as parameterized by the amount of arm-plane motion, can be used by clinicians to identify levels of motor recovery in patients with stroke.
|
Merdler, T., Liebermann, D. G., Levin, M. F., & Berman, S. (2013). Arm-plane representation of shoulder compensation during pointing movements in patients with stroke. J Electromyogr Kinesiol, 23(4), 938–947.
Abstract: Improvements in functional motor activities are often accompanied by motor compensations to overcome persistent motor impairment in the upper limb. Kinematic analysis is used to objectively quantify movement patterns including common motor compensations such as excessive trunk displacement during reaching. However, a common motor compensation to assist reaching, shoulder abduction, is not adequately characterized by current motion analysis approaches. We apply the arm-plane representation that accounts for the co-variation between movements of the whole arm, and investigate its ability to identify and quantify compensatory arm movements in stroke subjects when making forward arm reaches. This method has not been previously applied to the analysis of motion deficits. Sixteen adults with right post-stroke hemiparesis and eight healthy age-matched controls reached in three target directions (14 trials/target; sampling rate: 100Hz). Arm-plane movement was validated against endpoint, joint, and trunk kinematics and compared between groups. In stroke subjects, arm-plane measures were correlated with arm impairment (Fugl-Meyer Assessment) and ability (Box and Blocks) scores and were more sensitive than clinical measures to detect mild motor impairment. Arm-plane motion analysis provides new information about motor compensations involving the co-variation of shoulder and elbow movements that may help to understand the underlying motor deficits in patients with stroke.
|
Liebermann, D. G., Berman, S., Weingarden H., Levin, M. F., & Weiss, P. L. (2009). Kinematic features of arm and trunk movements in stroke patients and age-matched healthy controls during reaching in virtual and physical environments. In Virtual Rehabilitation International Conference (pp. 179–184).
Abstract: Motor performance of stroke patients and healthy individuals was compared in terms of selected kinematic features of arm and trunk movements while subjects reached for visual targets in virtual (VR) and physical (PH) environments. In PH, the targets were placed at an extended arm distance, while in VR comparably placed virtual targets were presented via GestureTek's IREX system. Our goal was to obtain further insights into research methods related to VR-based rehabilitation. Eight right-hemiparetic stroke patients (age =46-87 years) and 8 healthy adults (age =51-73 years) completed 84 reaching movements in VR and PH environments while seated. The results showed that arm and trunk movements differed in the two environments in patients and to a lesser extent in healthy individuals. Arm motion of patients became jerkier in VR, with larger paths and longer movement durations, and presented greater arm torsion (i.e., larger elbow rotations around the hand-shoulder axis). Interestingly, patients also showed a significant reduction of compensatory trunk movements during VR reaching. The findings indicate that when targets were perceived to be beyond hand reach, stroke patients may be less able to estimate 3D virtual target locations obtained from the 2D TV planar displays. This was not the case for healthy participants.
|
Levin, M. F., Berman, S., Weiss, N., Parmet, Y., Banina, M. C., Frenkel-Toledo, S., et al. (2023). ENHANCE proof-of-concept three-arm randomized trial: effects of reaching training of the hemiparetic upper limb restricted to the spasticity-free elbow range (Vol. 13).
Abstract: Post-stroke motor recovery processes remain unknown. Timescales and patterns of upper-limb (UL) recovery suggest a major impact of biological factors, with modest contributions from rehabilitation. We assessed a novel impairment-based training motivated by motor control theory where reaching occurs within the spasticity-free elbow range. Patients with subacute stroke (</= 6 month; n = 46) and elbow flexor spasticity were randomly allocated to a 10-day UL training protocol, either personalized by restricting reaching to the spasticity-free elbow range defined by the tonic stretch reflex threshold (TSRT) or non-personalized (non-restricted) and with/without anodal transcranial direct current stimulation. Outcomes assessed before, after, and 1 month post-intervention were elbow flexor TSRT angle and reach-to-grasp arm kinematics (primary) and stretch reflex velocity sensitivity, clinical impairment, and activity (secondary). Results were analyzed for 3 groups as well as those of the effects of impairment-based training. Clinical measures improved in both groups. Spasticity-free range training resulted in faster and smoother reaches, smaller (i.e., better) arm-plane path length, and closer-to-normal shoulder/elbow movement patterns. Non-personalized training improved clinical scores without improving arm kinematics, suggesting that clinical measures do not account for movement quality. Impairment-based training within a spasticity-free elbow range is promising since it may improve clinical scores together with arm movement quality.Clinical Trial Registration: URL: http://www.clinicaltrials.gov . Unique Identifier: NCT02725853; Initial registration date: 01/04/2016.
|
Banina, M. C., Molad, R., Solomon, J. S., Berman, S., Soroker, N., Frenkel-Toledo, S., et al. (2020). Exercise intensity of the upper limb can be enhanced using a virtual rehabilitation system. Disabil Rehabil Assist Technol, , 1–7.
Abstract: Purpose: Motor recovery of the upper limb (UL) is related to exercise intensity, defined as movement repetitions divided by minutes in active therapy, and task difficulty. However, the degree to which UL training in virtual reality (VR) applications deliver intense and challenging exercise and whether these factors are considered in different centres for people with different sensorimotor impairment levels is not evidenced. We determined if (1) a VR programme can deliver high UL exercise intensity in people with sub-acute stroke across different environments and (2) exercise intensity and difficulty differed among patients with different levels of UL sensorimotor impairment.Methods: Participants with sub-acute stroke (<6 months) with Fugl-Meyer scores ranging from 14 to 57, completed 10 approximately 50-min UL training sessions using three unilateral and one bilateral VR activity over 2 weeks in centres located in three countries. Training time, number of movement repetitions, and success rates were extracted from game activity logs. Exercise intensity was calculated for each participant, related to UL impairment, and compared between centres.Results: Exercise intensity was high and was progressed similarly in all centres. Participants had most difficulty with bilateral and lateral reaching activities. Exercise intensity was not, while success rate of only one unilateral activity was related to UL severity.Conclusion: The level of intensity attained with this VR exercise programme was higher than that reported in current stroke therapy practice. Although progression through different activity levels was similar between centres, clearer guidelines for exercise progression should be provided by the VR application.Implications for rehabilitationVR rehabilitation systems can be used to deliver intensive exercise programmes.VR rehabilitation systems need to be designed with measurable progressions through difficulty levels.
|