Liebermann, D. G., Berman, S., Weiss, P. L. T., & Levin, M. F. (2012). Kinematics of reaching movements in a 2-d virtual environment in adults with and without stroke. IEEE Trans Neural Syst Rehabil Eng, 20(6), 778–787.
Abstract: Virtual reality environments are increasingly being used for upper limb rehabilitation in poststroke patients. Our goal was to determine if arm reaching movements made in a 2-D video-capture virtual reality environment are similar to those made in a comparable physical environment. We compared arm and trunk kinematics for reaches made with the right, dominant arm to three targets (14 trials per target) in both environments by 16 adults with right poststroke hemiparesis and by eight healthy age-matched controls. Movement kinematics were recorded with a three-camera optoelectronic system at 100 samples/s. Reaching movements made by both control and stroke subjects were affected by viewing the targets in the video-capture 2-D virtual environment. Movements were slower, shorter, less straight, less accurate and involved smaller ranges of shoulder and elbow joint excursions for target reaches in the virtual environment compared to the physical environment in all subjects. Thus, there was a decrease in the overall movement quality for movements made in the 2-D virtual environment. This suggests that 2-D video-capture virtual reality environments should be used with caution when the goal of the rehabilitation program is to improve the quality of movement patterns of the upper limb.
|
Krasovsky, T., Berman, S., & Liebermann, D. G. (2010). Kinematic features of continuous hand reaching movements under simple and complex rhythmical constraints. J Electromyogr Kinesiol, 20(4), 636–641.
Abstract: BACKGROUND: Auditory cues are known to alter movement kinematics in healthy people as well as in people with neurological conditions (e.g., Parkinson's disease or stroke). Pacing movement to rhythmical constraints is known to change both the spatial and temporal features of movement. However, the effect of complexity of pacing on the spatial and temporal kinematic properties is still poorly understood. The current study investigated spatial and temporal aspects of movement (path and speed, respectively) and their integration while subjects followed simple isochronous or complex non-isochronous rhythmical constraints. Spatiotemporal decoupling was expected under the latter constraint. METHODS: Ten subjects performed point-to-point hand movements towards visual targets on the surface of a hemisphere, while following continuous auditory cues of different pace and meter. The spatial and temporal properties of movement were compared to geodesic paths and unimodal bell-shaped speed profiles, respectively. Multiple two-way RM-ANOVAs (pace [1-2 Hz] x meter [duple-triple]) were performed on the different kinematic variables calculated to assess hand deviations from the model data (p< or = 0.05). RESULTS: As expected, increasing pace resulted in straighter hand paths and smoother speed profiles. Meter, however, affected only the path (shorter and straighter under triple) without significantly changing speed. Such an effect was observed at the slow pace only. CONCLUSIONS: Under simple rhythmic cues, an increase in pace causes spontaneous adjustments in spatial features (straighter hand paths) while preserving temporal ones (maximally-smoothed hand speeds). Complex rhythmical cues in contrast perturb spatiotemporal coupling and challenge movement control. These results may have important practical implications in motor rehabilitation.
|
Liebermann, D. G., Katz, L., Hughes, M. D., Bartlett, R. M., McClements, J., & Franks, I. M. (2002). Advances in the application of information technology to sport performance. J Sports Sci, 20(10), 755–769.
Abstract: This paper overviews the diverse information technologies that are used to provide athletes with relevant feedback. Examples taken from various sports are used to illustrate selected applications of technology-based feedback. Several feedback systems are discussed, including vision, audition and proprioception. Each technology described here is based on the assumption that feedback would eventually enhance skill acquisition and sport performance and, as such, its usefulness to athletes and coaches in training is critically evaluated.
|
Liebermann, D. G., & Defrin, R. (2009). Characteristics of the nociceptive withdrawal response elicited under aware and unaware conditions. J Electromyogr Kinesiol, 19(2), e114–22.
Abstract: BACKGROUND: Nociceptive withdrawal reflexes (NWR) are subject to supraspinal modulation. Therefore, awareness about a noxious stimulation may affect its characteristics. The goal of this study was to investigate the effect of different degrees of awareness on the NWR. METHOD: Eight subjects performed back and forth hand movements from a common starting point towards four visual targets during which NWR was evoked when subjects were either unaware or aware of a noxious stimulation (unaware-NWR and aware-NWR). For the comparison between the NWR under both conditions, onset latencies and kinematic variables were computed respectively from the recorded Biceps Brachii EMG and from the spatial coordinates of hand reflective markers. RESULTS: The onset latency of unaware-NWR (mean+/-SD 73.9+/-13 ms) was significantly shorter than that of the aware-NWR (91.1+/-27 ms, p<0.05). The total duration of the muscular activation was shorter in unaware-NWR than in aware-NWR. The slopes of the tangential velocity-time curves were steeper for unaware-NWR than for aware-NWR (p=0.057). CONCLUSIONS: The results suggest that supraspinal regulation of NWR under different degrees of awareness involves the re-parameterization of selected spatiotemporal aspects of a pre-structured motor response.
|
Levin, M. F., Banina, M. C., Frenkel-Toledo, S., Berman, S., Soroker, N., Solomon, J. M., et al. (2018). Personalized upper limb training combined with anodal-tDCS for sensorimotor recovery in spastic hemiparesis: study protocol for a randomized controlled trial. Trials, 19(1), 7.
Abstract: BACKGROUND: Recovery of voluntary movement is a main rehabilitation goal. Efforts to identify effective upper limb (UL) interventions after stroke have been unsatisfactory. This study includes personalized impairment-based UL reaching training in virtual reality (VR) combined with non-invasive brain stimulation to enhance motor learning. The approach is guided by limiting reaching training to the angular zone in which active control is preserved (“active control zone”) after identification of a “spasticity zone”. Anodal transcranial direct current stimulation (a-tDCS) is used to facilitate activation of the affected hemisphere and enhance inter-hemispheric balance. The purpose of the study is to investigate the effectiveness of personalized reaching training, with and without a-tDCS, to increase the range of active elbow control and improve UL function. METHODS: This single-blind randomized controlled trial will take place at four academic rehabilitation centers in Canada, India and Israel. The intervention involves 10 days of personalized VR reaching training with both groups receiving the same intensity of treatment. Participants with sub-acute stroke aged 25 to 80 years with elbow spasticity will be randomized to one of three groups: personalized training (reaching within individually determined active control zones) with a-tDCS (group 1) or sham-tDCS (group 2), or non-personalized training (reaching regardless of active control zones) with a-tDCS (group 3). A baseline assessment will be performed at randomization and two follow-up assessments will occur at the end of the intervention and at 1 month post intervention. Main outcomes are elbow-flexor spatial threshold and ratio of spasticity zone to full elbow-extension range. Secondary outcomes include the Modified Ashworth Scale, Fugl-Meyer Assessment, Streamlined Wolf Motor Function Test and UL kinematics during a standardized reach-to-grasp task. DISCUSSION: This study will provide evidence on the effectiveness of personalized treatment on spasticity and UL motor ability and feasibility of using low-cost interventions in low-to-middle-income countries. TRIAL REGISTRATION: ClinicalTrials.gov, ID: NCT02725853 . Initially registered on 12 January 2016.
|