Home | << 1 2 3 4 5 6 7 8 9 >> |
Liebermann, D. G., & Goodman, D. (1991). Effects of visual guidance on the reduction of impacts during landings. Ergonomics, 34(11), 1399–1406.
Abstract: While a common view is that vision is essential to motor performance, some recent studies have shown that continuous visual guidance may not always be required within certain time constraints. This study investigated a landing-related task (self-released falls) to assess the extent to which visual information enhances the ability to reduce the impacts at touchdown. Six individuals performed six blocked trials from four height categories in semi-counterbalanced order (5-10, 20-25, 60-65, and 90-95 cm) in vision and no-vision conditions randomly assigned. A series of two-way ANOVA with repeated measures were carried out separately on each dependent variable collapsed over six trials. The results indicated that vision during the flight did not produce softer landings. Indeed, in analysing the first peak (PFP) a main effect for visual condition was revealed in that the mean amplitude was slightly higher when vision was available (F(1,5) = 6.57; p less than 0.05), thus implicating higher forces at impact. The results obtained when the time to the first peak (TFP) was applied showed no significant differences between conditions (F(1,5) less than 1). As expected, in all cases, the analyses yielded significant main effects for the height categories factor. It appears that during self-initiated falls in which the environmental cues are known before the event, visual guidance is not necessary in order to adopt a softer landing strategy.
|
Liebermann, D. G., Ben-David, J., Schweitzer, N., Apter, Y., & Parush, A. (1995). A field study of braking reactions during driving I: Triggering and modulation. Ergonomics, 38(9), 1894–1902.
Abstract: The present experiment was carried out to explore the response of driving subjects to emergency braking. The field trial consisted of driving behind a leading vehicle while the following drivers' responses were recorded by telemetry. A group of 51 individuals performed a series of trials at two driving speeds (60 and 80km/h), two following distances (6 and 12 m), and two braking conditions (real and dummy braking). Not all of these subjects completed all conditions or the minimum number of trials. The dependent variables were the total braking time (TBT) and its subcomponents: braking reaction time (BRT), and accelerator-to-brake movement time (MT). These data were analysed in three separate three-way ANOVAs with repeated measures on all factors. The results showed that when subjects were not aware of the forthcoming braking, the distance and braking conditions had major effects on all dependent variables. At the shorter following distance drivers reacted and moved faster. Similarly, when the brakes were real compared with dummy (i.e. brake lights only) drivers reacted faster. In addition, drivers reacted to onset of brake lights in 83% of the cases when dummy braking was applied, compared with 97% when real brakes were applied. Speed of driving did not show any significant effects and did not appear to influence the cognitive or attentional set to anticipate an emergency manoeuvre. These findings suggest that changes in angular velocity during optic expansion of the leading vehicle may be used as a cue to modulate braking movement, while onset of brake lights alone may be enough to trigger a ‘ballistic’ preventive response.
|
Schweitzer, N., Apter, Y., Ben-David, J., Liebermann, D. G., & Parush, A. (1995). A field study of braking reactions during driving II: Minimum driver braking times. Ergonomics, 38(9), 1903–1910.
Abstract: The minimum total braking time (i.e. the braking reaction time plus the accelerator-to-brake movement time) plays an important role in defining a minimum following gap (MFG). This study was designed to obtain a lower limit for this gap. Total braking times (TBT) of a group of 51 male and female young athletes were monitored during real driving conditions. Sudden braking applied by a leading private passenger vehicle initiated the trials. A within-subject design was used to study the effects of different factors on braking time. Individuals performed a series of semi-counterbalanced trials at two following distances (6 and 12 m), two speeds (60 and 80 km/h) and three expectancy stages (naïve driving, partial knowledge, and full knowledge of the forthcoming manoeuvre). A three-way repeated measures ANOVA showed no major effects of ‘speed’, but major effects of the ‘expectancy’ and the ‘distance’ factors. The experiment yielded a mean TBT of 0·678 s (SD = 0·144 s) for trials averaged over distances and speeds in the naïve condition only. The data emphasize the role played by pre-cues in the braking response prior to emergency stops. Both the level of awareness of the forthcoming manoeuvre and the distance between vehicles appear to determine the response time. The descriptive statistics presented may also provide the basis for an objective, acceptable and legally valid minimum time gap for prosecution of ‘careless’ drivers.
|
Banina, M. C., Molad, R., Solomon, J. S., Berman, S., Soroker, N., Frenkel-Toledo, S., et al. (2020). Exercise intensity of the upper limb can be enhanced using a virtual rehabilitation system. Disabil Rehabil Assist Technol, , 1–7.
Abstract: Purpose: Motor recovery of the upper limb (UL) is related to exercise intensity, defined as movement repetitions divided by minutes in active therapy, and task difficulty. However, the degree to which UL training in virtual reality (VR) applications deliver intense and challenging exercise and whether these factors are considered in different centres for people with different sensorimotor impairment levels is not evidenced. We determined if (1) a VR programme can deliver high UL exercise intensity in people with sub-acute stroke across different environments and (2) exercise intensity and difficulty differed among patients with different levels of UL sensorimotor impairment.Methods: Participants with sub-acute stroke (<6 months) with Fugl-Meyer scores ranging from 14 to 57, completed 10 approximately 50-min UL training sessions using three unilateral and one bilateral VR activity over 2 weeks in centres located in three countries. Training time, number of movement repetitions, and success rates were extracted from game activity logs. Exercise intensity was calculated for each participant, related to UL impairment, and compared between centres.Results: Exercise intensity was high and was progressed similarly in all centres. Participants had most difficulty with bilateral and lateral reaching activities. Exercise intensity was not, while success rate of only one unilateral activity was related to UL severity.Conclusion: The level of intensity attained with this VR exercise programme was higher than that reported in current stroke therapy practice. Although progression through different activity levels was similar between centres, clearer guidelines for exercise progression should be provided by the VR application.Implications for rehabilitationVR rehabilitation systems can be used to deliver intensive exercise programmes.VR rehabilitation systems need to be designed with measurable progressions through difficulty levels.
Keywords: Stroke; difficulty; exercise therapy; intensity; personalized exercise; upper limb; virtual reality
|
Liebermann, D. G., Levin, M. F., McIntyre, J., Weiss, P. L., & Berman, S. (2010). Arm path fragmentation and spatiotemporal features of hand reaching in healthy subjects and stroke patients. Conf Proc IEEE Eng Med Biol Soc, 2010, 5242–5245.
Abstract: Arm motion in healthy humans is characterized by smooth and relatively short paths. The current study focused on 3D reaching in stroke patients. Sixteen right-hemiparetic stroke patients and 8 healthy adults performed 42 reaching movements towards 3 visual targets located at an extended arm distance. Performance was assessed in terms of spatial and temporal features of the movement; i.e., hand path, arm posture and smoothness. Differences between groups and within subjects were hypothesized for spatial and temporal aspects of reaching under the assumption that both are independent. As expected, upper limb motion of patients was characterized by longer and jerkier hand paths and slower speeds. Assessment of the number of sub-movements within each movement did not clearly discriminate between groups. Principal component analyses revealed specific clusters of either spatial or temporal measures, which accounted for a large proportion of the variance in patients but not in healthy controls. These findings support the notion of a separation between spatial and temporal features of movement. Stroke patients may fail to integrate the two aspects when executing reaching movements towards visual targets.
|