Home | << 1 >> |
Melzer, I., Krasovsky, T., Oddsson, L. I. E., & Liebermann, D. G. (2010). Age-related differences in lower-limb force-time relation during the push-off in rapid voluntary stepping. Clin Biomech (Bristol, Avon), 25(10), 989–994.
Abstract: BACKGROUND: This study investigated the force-time relationship during the push-off stage of a rapid voluntary step in young and older healthy adults, to study the assumption that when balance is lost a quick step may preserve stability. The ability to achieve peak propulsive force within a short time is critical for the performance of such a quick powerful step. We hypothesized that older adults would achieve peak force and power in significantly longer times compared to young people, particularly during the push-off preparatory phase. METHODS: Fifteen young and 15 older volunteers performed rapid forward steps while standing on a force platform. Absolute anteroposterior and body weight normalized vertical forces during the push-off in the preparation and swing phases were used to determine time to peak and peak force, and step power. Two-way analyses of variance ('Group' [young-older] by 'Phase' [preparation-swing]) were used to assess our hypothesis (P </= 0.05). FINDINGS: Older people exerted lower peak forces (anteroposterior and vertical) than young adults, but not necessarily lower peak power. More significantly, they showed a longer time to peak force, particularly in the vertical direction during the preparation phase. INTERPRETATIONS: Older adults generate propulsive forces slowly and reach lower magnitudes, mainly during step preparation. The time to achieve a peak force and power, rather than its actual magnitude, may account for failures in quickly performing a preventive action. Such delay may be associated with the inability to react and recruit muscles quickly. Thus, training elderly to step fast in response to relevant cues may be beneficial in the prevention of falls.
|
Melzer, I., Liebermann, D. G., Krasovsky, T., & Oddsson, L. I. E. (2010). Cognitive load affects lower limb force-time relations during voluntary rapid stepping in healthy old and young adults. J Gerontol A Biol Sci Med Sci, 65(4), 400–406.
Abstract: BACKGROUND: Quick step execution may prevent falls when balance is lost; adding a concurrent task delays this function. We investigate whether push-off force-time relations during the execution of rapid voluntary stepping is affected by a secondary task in older and young adults. METHODS: Nineteen healthy older adults and 12 young adults performed rapid voluntary stepping under single- and dual-task conditions. Peak power, peak force, and time to peak force during preparatory and swing phases of stepping were extracted from center of pressure and ground reaction force data. RESULTS: For dual-task condition compared with single-task condition, older adults show a longer time to reach peak force during the preparation and swing phases compared with young adults (approximately 25% vs approximately 10%, respectively). Peak power and peak force were not affected by a concurrent attention-demanding task. CONCLUSION: Older adults have difficulty allocating sufficient attention for fast muscle recruitment when concurrently challenged by an attention-demanding task.
|
Park, J., Pazin, N., Friedman, J., Zatsiorsky, V. M., & Latash, M. L. (2014). Mechanical properties of the human hand digits: Age-related differences. Clinical Biomechanics, 29(2), 129–137.
Abstract: Background
Mechanical properties of human digits may have significant implications for the hand function. We quantified several mechanical characteristics of individual digits in young and older adults. Methods Digit tip friction was measured at several normal force values using a method of induced relative motion between the digit tip and the object surface. A modified quick-release paradigm was used to estimate digit apparent stiffness, damping, and inertial parameters. The subjects grasped a vertical handle instrumented with force/moment sensors using a prismatic grasp with four digits; the handle was fixed to the table. Unexpectedly, one of the sensors yielded leading to a quick displacement of the corresponding digit. A second-order, linear model was used to fit the force/displacement data. Findings Friction of the digit pads was significantly lower in older adults. The apparent stiffness coefficient values were higher while the damping coefficients were lower in older adults leading to lower damping ratio. The damping ratio was above unity for most data in young adults and below unity for older adults. Quick release of a digit led to force changes in other digits of the hand, likely due to inertial hand properties. These phenomena of “mechanical enslaving” were smaller in older adults although no significant difference was found in the inertial parameter in the two groups. Interpretations The decreased friction and damping ratio present challenges for the control of everyday prehensile tasks. They may lead to excessive digit forces and low stability of the grasped object. Keywords: hand; aging; friction; apparent stiffness; damping
|
Prushansky, T., Kaplan-Gadasi, L., & Friedman, J. (2023). The relationship between thoracic posture and ultrasound echo intensity of muscles spanning this region in healthy men and women. Physiother Theory Pract, 39(6), 1257–1265.
Abstract: PURPOSE: Skeletal muscle echogenicity intensity (EI) is considered a measure of muscle quality, being associated with old age and pathologies. Whether EI variations can be identified in healthy adults, due to habitual shortened or elongated muscle position is unknown. Thus, this study aimed to assess the relationship between thoracic kyphosis angulation and EI scores of muscles spanning this region ((Lower Trapezius (LT), Rhomboid Major (RM), Erector Spine (ES)) in healthy young people and in addition to examine the relationship between the change in thoracic kyphosis angle from relaxed to upright position (� degrees ) and the EI of these muscles. METHODS: Thoracic kyphosis in relaxed and erect standing was measured using a digital inclinometer in 29 healthy adults (16 women, 13 men), aged 25-35 years. The thoracic kyphosis angles including the difference between relaxed and erect postures (� degrees ) were correlated to the EI scores of right and left LT, RM and ES. RESULTS: No significant differences in EI were found between the 3 muscles EI or between sides, hence they were pooled together to a total thoracic EI score (TTEI). Although the TTEI did not correlate with relaxed or erect thoracic kyphosis, it was significantly but negatively correlated with � degrees in the entire group: Pearson's correlation coefficient of r = -0.544; p = .01 and in men; r = -0.732; p = .01, failing to reach significance in women; r = -0.457. CONCLUSION: The negative association between the EI of the explored muscles and � degrees could imply a possible relationship between these muscles range of movement excursions and their composition.
Keywords: Ultrasound imaging; muscle echogenicity; posture; thoracic kyphosis
|
Wilf, M., Korakin, A., Bahat, Y., Koren, O., Galor, N., Dagan, O., et al. (2024). Using virtual reality-based neurocognitive testing and eye tracking to study naturalistic cognitive-motor performance. Neuropsychologia, 194, 108744.
Abstract: Natural human behavior arises from continuous interactions between the cognitive and motor domains. However, assessments of cognitive abilities are typically conducted using pen and paper tests, i.e., in isolation from “real life” cognitive-motor behavior and in artificial contexts. In the current study, we aimed to assess cognitive-motor task performance in a more naturalistic setting while recording multiple motor and eye tracking signals. Specifically, we aimed to (i) delineate the contribution of cognitive and motor components to overall task performance and (ii) probe for a link between cognitive-motor performance and pupil size. To that end, we used a virtual reality (VR) adaptation of a well-established neurocognitive test for executive functions, the 'Color Trails Test' (CTT). The VR-CTT involves performing 3D reaching movements to follow a trail of numbered targets. To tease apart the cognitive and motor components of task performance, we included two additional conditions: a condition where participants only used their eyes to perform the CTT task (using an eye tracking device), incurring reduced motor demands, and a condition where participants manually tracked visually-cued targets without numbers on them, incurring reduced cognitive demands. Our results from a group of 30 older adults (>65) showed that reducing cognitive demands shortened completion times more extensively than reducing motor demands. Conditions with higher cognitive demands had longer target search time, as well as decreased movement execution velocity and head-hand coordination. We found larger pupil sizes in the more cognitively demanding conditions, and an inverse correlation between pupil size and completion times across individuals in all task conditions. Lastly, we found a possible link between VR-CTT performance measures and clinical signatures of participants (fallers versus non-fallers). In summary, performance and pupil parameters were mainly dependent on task cognitive load, while maintaining systematic interindividual differences. We suggest that this paradigm opens the possibility for more detailed profiling of individual cognitive-motor performance capabilities in older adults and other at-risk populations.
|