Friedman, J., & Flash, T. (2007). Task-dependent selection of grasp kinematics and stiffness in human object manipulation. Cortex, 43(3), 444–460.
Abstract: Object manipulation with the hand is a complex task. The task has redundancies at many levels, allowing many possibilities for the selection of grasp points, the orientation and posture of the hand, the forces to be applied at each fingertip and the impedance properties of the hand. Despite this inherent complexity, humans perform object manipulation nearly effortlessly. This article presents experimental findings of how humans grasp and manipulate objects, and examines the compatibility of grasps selected for specific tasks. This is accomplished by looking at the velocity transmission and force transmission ellipsoids, which represent the transmission ratios of the corresponding quantity from the joints to the object, as well as the stiffness ellipsoid which represents the directional stiffness of the grasp. These ellipsoids allow visualization of the grasp Jacobian and grasp stiffness matrices. The results show that the orientation of the ellipsoids can be related to salient task requirements.
|
Nahab, F., Kundu, P., Gallea, C., Kakareka, J., Pursley, R., Pohida, T., et al. (2011). The neural processes underlying self-agency. Cerebral Cortex, 21(1), 48–55.
Abstract: Self-agency (SA) is the individual’s perception that an action is the consequence of his/her own intention. The neural networks underlying SA are not well understood. We carried out a novel, ecologically valid, virtual-reality experiment using BOLD-fMRI where SA could be modulated in real-time while subjects performed voluntary finger movements. Behavioral testing was also performed to assess the explicit judgment of SA. Twenty healthy volunteers completed the experiment. Results of the behavioral testing demonstrated paradigm validity along with the identification of a bias that led subjects to over- or underestimate the amount of control they had. The fMRI experiment identified two discrete networks. These leading and lagging networks likely represent a spatial and temporal flow of information, with the leading network serving the role of mismatch detection and the lagging network receiving this information and
mediating its elevation to conscious awareness, giving rise to SA.
|