Hoffman, J. R., Liebermann, D., & Gusis, A. (1997). Relationship of leg strength and power to ground reaction forces in both experienced and novice jump trained personnel. Aviat Space Environ Med, 68(8), 710–714.
Abstract: METHODS: There were 14 male soldiers who participated in this study examining the relationship of leg strength and power on landing performance. Subjects were separated into two groups. The first group (E, n = 7) were parachute training instructors and highly experienced in parachute jumping. The second group of subjects (N, n = 7) had no prior parachute training experience and were considered novice jumpers. All subjects were tested for one-repetition maximum (1 RM) squat strength and maximal jump power. Ground reaction forces (GRF) and the time to peak force (TPF) at landing were measured from jumps at four different heights (95 cm, 120 cm, 145 cm, and 170 cm). All jumps were performed from a customized jump platform onto a force plate. RESULTS: No differences were seen between E and N in either IRM squat strength or in MJP. In addition, no differences were seen between the groups for time to peak force at any jump height. However, significantly greater GRF were observed in E compared to N. Moderate to high correlations between maximal jump power and GRF (r values ranging from 0.62-0.93) were observed in E. Although maximal jump power and the TPF was significantly correlated (r = -0.89) at only 120 cm for E, it was interesting to note that the correlations between MJP and the time to peak force in E were all negative and that the correlations between these variables in N were all positive. CONCLUSIONS: These results suggest that experienced parachutists may use a different landing strategy than novice jumpers. This difference may be reflected by differences in GRF generated during impact and a more efficient utilization of muscle power during the impact phase of the landing.
|
Falk, B., Eliakim, A., Dotan, R., Liebermann, D. G., Regev, R., & Bar-Or, O. (1997). Birth weight and physical ability in 5- to 8-yr-old healthy children born prematurely. Med Sci Sports Exerc, 29(9), 1124–1130.
Abstract: Recent advances in perinatal care have resulted in increased survival rates of extremely small and immature newborns. This has resulted in some neurodevelopmental impairment. The purpose of this study was to quantitatively evaluate and compare neuromuscular performance in children born prematurely at various levels of subnormal birth weight (BW). Subjects were 5- to 8-yr-old children born prematurely at different levels of subnormal BW (535-1760 g, N = 22, PM), and age-matched controls born at full term (> 2500 g, N = 15, CON). None of the subjects had any clinically defined neuromuscular disabilities. Body mass (BM) of PM was lower than that of CON (18.3 +/- 2.7 vs 21.7 +/- 3.8 kg) with no difference in height or sum of 4 skinfolds. Peak mechanical power output determined with a 15-s modified Wingate Anaerobic Test and corrected for BM was lower (P = 0.07) in PM than in CON (5.11 +/- 1.07 vs 5.94 +/- 1.00 W.kg-1). This was especially noticeable in children born at extremely low BW (ELBW, < 1000 g, 4.49 +/- 1.04 W.kg-1, P < 0.01). Peak power, determined in a force-plate vertical jump, corrected for BM was lower in PM vs CON (25.5 +/- 5.4 vs 30.8 +/- 5.2 W.kg-1, respectively P = 0.01), especially in the ELBW group (20.0 +/- 5.5 W.kg-1). Similarly, the elapsed time between peak velocity and actual jump take-off was longer in PM than in CON (41.2 +/- 9.4 vs 35.8 +/- 5.8 ms, respectively, P = 0.04). No differences were observed in peak force. The results suggest that performance deficiencies of prematurely-born children may be a result of inferior inter-muscular coordination. The precise neuromotor factors responsible for this should be identified by future research.
|