Warning: A non-numeric value encountered in /home/public/export/export_srwxml.php on line 32

Warning: Cannot modify header information - headers already sent by (output started at /home/public/export/export_srwxml.php:32) in /home/public/includes/include.inc.php on line 5344
1.1 1 xml info:srw/schema/1/mods-v3.2 Birth weight and physical ability in 5- to 8-yr-old healthy children born prematurely Falk B author Eliakim A author Dotan R author Liebermann D G author Regev R author Bar-Or O author 1997 English Recent advances in perinatal care have resulted in increased survival rates of extremely small and immature newborns. This has resulted in some neurodevelopmental impairment. The purpose of this study was to quantitatively evaluate and compare neuromuscular performance in children born prematurely at various levels of subnormal birth weight (BW). Subjects were 5- to 8-yr-old children born prematurely at different levels of subnormal BW (535-1760 g, N = 22, PM), and age-matched controls born at full term (> 2500 g, N = 15, CON). None of the subjects had any clinically defined neuromuscular disabilities. Body mass (BM) of PM was lower than that of CON (18.3 +/- 2.7 vs 21.7 +/- 3.8 kg) with no difference in height or sum of 4 skinfolds. Peak mechanical power output determined with a 15-s modified Wingate Anaerobic Test and corrected for BM was lower (P = 0.07) in PM than in CON (5.11 +/- 1.07 vs 5.94 +/- 1.00 W.kg-1). This was especially noticeable in children born at extremely low BW (ELBW, < 1000 g, 4.49 +/- 1.04 W.kg-1, P < 0.01). Peak power, determined in a force-plate vertical jump, corrected for BM was lower in PM vs CON (25.5 +/- 5.4 vs 30.8 +/- 5.2 W.kg-1, respectively P = 0.01), especially in the ELBW group (20.0 +/- 5.5 W.kg-1). Similarly, the elapsed time between peak velocity and actual jump take-off was longer in PM than in CON (41.2 +/- 9.4 vs 35.8 +/- 5.8 ms, respectively, P = 0.04). No differences were observed in peak force. The results suggest that performance deficiencies of prematurely-born children may be a result of inferior inter-muscular coordination. The precise neuromotor factors responsible for this should be identified by future research. *Birth Weight Child Child Development/physiology Child Preschool Female Follow-Up Studies Humans Infant Newborn *Infant Premature Male *Motor Skills *Physical Fitness PMID:9309621 exported from refbase (https://refbase.nfshost.com/show.php?record=64), last updated on Wed, 30 Jan 2013 09:38:57 +0000 text http://www.ncbi.nlm.nih.gov/pubmed/9309621 http://www.ncbi.nlm.nih.gov/pubmed/9309621 9309621 Falk_etal1997 Medicine and Science in Sports and Exercise Med Sci Sports Exerc 1997 continuing periodical academic journal 29 9 1124 1130 0195-9131 1