toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Friedman, J.; Korman, M. pdf  url
doi  openurl
  Title Kinematic Strategies Underlying Improvement in the Acquisition of a Sequential Finger Task with Self-Generated vs. Cued Repetition Training Type Journal Article
  Year 2012 Publication PLoS one Abbreviated Journal PLoS One  
  Volume 7 Issue 12 Pages e52063  
  Keywords  
  Abstract Many motor skills, such as typing, consist of articulating simple movements into novel sequences that are executed faster and smoother with practice. Dynamics of re-organization of these movement sequences with multi-session training and its dependence on the amount of self-regulation of pace during training is not yet fully understood. In this study, participants practiced a sequence of key presses. Training sessions consisted of either externally (Cued) or self-initiated (Uncued) training. Long-term improvements in performance speed were mainly due to reducing gaps between finger movements in both groups, but Uncued training induced higher gains. The underlying kinematic strategies producing these changes and the representation of the trained sequence differed significantly across subjects, although net gains in speed were similar. The differences in long-term memory due to the type of training and the variation in strategies between subjects, suggest that the different neural mechanisms may subserve the improvements observed in overall performance.  
  Address Department of Cognitive Science, Macquarie University, Sydney, Australia ; ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23272210 Approved no  
  Call Number Serial 41  
Permanent link to this record
 

 
Author Grip, H.; Tengman, E.; Liebermann, D.G.; Hager, C.K. url  doi
openurl 
  Title Kinematic analyses including finite helical axes of drop jump landings demonstrate decreased knee control long after anterior cruciate ligament injury Type Journal Article
  Year 2019 Publication PloS one Abbreviated Journal PLoS One  
  Volume 14 Issue 10 Pages e0224261  
  Keywords  
  Abstract The purpose was to evaluate the dynamic knee control during a drop jump test following injury of the anterior cruciate ligament injury (ACL) using finite helical axes. Persons injured 17-28 years ago, treated with either physiotherapy (ACLPT, n = 23) or reconstruction and physiotherapy (ACLR, n = 28) and asymptomatic controls (CTRL, n = 22) performed a drop jump test, while kinematics were registered by motion capture. We analysed the Preparation phase (from maximal knee extension during flight until 50 ms post-touchdown) followed by an Action phase (until maximal knee flexion post-touchdown). Range of knee motion (RoM), and the length of each phase (Duration) were computed. The finite knee helical axis was analysed for momentary intervals of ~15 degrees of knee motion by its intersection (DeltaAP position) and inclination (DeltaAP Inclination) with the knee's Anterior-Posterior (AP) axis. Static knee laxity (KT100) and self-reported knee function (Lysholm score) were also assessed. The results showed that both phases were shorter for the ACL groups compared to controls (CTRL-ACLR: Duration 35+/-8 ms, p = 0.000, CTRL-ACLPT: 33+/-9 ms, p = 0.000) and involved less knee flexion (CTRL-ACLR: RoM 6.6+/-1.9 degrees , p = 0.002, CTRL-ACLR: 7.5 +/-2.0 degrees , p = 0.001). Low RoM and Duration correlated significantly with worse knee function according to Lysholm and higher knee laxity according to KT-1000. Three finite helical axes were analysed. The DeltaAP position for the first axis was most anterior in ACLPT compared to ACLR (DeltaAP position -1, ACLPT-ACLR: 13+/-3 mm, p = 0.004), with correlations to KT-1000 (rho 0.316, p = 0.008), while the DeltaAP inclination for the third axis was smaller in the ACLPT group compared to controls (DeltaAP inclination -3 ACLPT-CTRL: -13+/-5 degrees , p = 0.004) and showed a significant side difference in ACL injured groups during Action (Injured-Non-injured: 8+/-2.7 degrees , p = 0.006). Small DeltaAP inclination -3 correlated with low Lysholm (rho 0.391, p = 0.002) and high KT-1000 (rho -0.450, p = 0.001). Conclusions Compensatory movement strategies seem to be used to protect the injured knee during landing. A decreased DeltaAP inclination in injured knees during Action suggests that the dynamic knee control may remain compromised even long after injury.  
  Address Department of Community Medicine and Rehabilitation, Physiotherapy, Umea University, Umea, Sweden  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31671111 Approved no  
  Call Number Serial 102  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: